skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fabrication of Surface Polymer Brushes Via Thin Film Crystallization and Solvent Annealing
Abstract Polymer single crystals are used as templates to synthesize polymer brushes, known as the “polymer‐single‐crystal‐assisted‐grafting‐to” (PSCAGT) approach. Polymer brushes with controlled grafting densities and spatial tethering locations are demonstrated. Previous works focused on solution crystallization, which involves large amounts of organic solvent, and the grafting density can only be tuned by varying crystallization temperatures. In this work, thin film crystallization is utilized to fabricate 2D polymer crystals on flat surfaces. Subsequent chemical tethering leads to polymer brushes that retain the original morphology of the crystals with high fidelity. Furthermore, it is shown that the grafting density of the polymer brushes fabricated using this method depends on the chain end distribution on the top/bottom surfaces of the crystal, which can be facilely controlled by annealing the crystals at various nonsolvent media. This work broadens the scope of the PSCAGT method and provides a new route to achieve polymer brushes with controlled structures.  more » « less
Award ID(s):
1709663 2104968
PAR ID:
10404416
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Rapid Communications
Volume:
44
Issue:
9
ISSN:
1022-1336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Block copolymer brushes are of great interest due to their rich phase behavior and value‐added properties compared to homopolymer brushes. Traditional synthesis involves grafting‐to and grafting‐from methods. In this work, a recently developed “polymer‐single‐crystal‐assisted‐grafting‐to” method is applied for the preparation of block copolymer brushes on flat glass surfaces. Triblock copolymer poly(ethylene oxide)‐b‐poly(l‐lactide)‐b‐poly(3‐(triethoxysilyl)propyl methacrylate) (PEO‐b‐PLLA‐b‐PTESPMA) is synthesized with PLLA as the brush morphology‐directing component and PTESPMA as the anchoring block. PEO‐b‐PLLA block copolymer brushes are obtained by chemical grafting of the triblock copolymer single crystals onto a glass surface. The tethering point and overall brush pattern are determined by the single crystal morphology. The grafting density is calculated to be ≈0.36 nm−2from the atomic force microscopy results and is consistent with the theoretic calculation based on the PLLA crystalline lattice. This work provides a new strategy to synthesize well‐defined block copolymer brushes. 
    more » « less
  2. We herein report the fabrication of a Velcro-mimicking surface based on polymer brushes. Using poly(ε-caprolactone) (PCL) as the model polymer, polymer loop brushes (PLBs) and singly tethered polymer brushes (STPBs) with nearly identical tethering point density and brush heights were synthesized using a polymer single crystal (PSC)-assisted grafting-to method. Atomic force microscopy-based single molecular force spectroscopy (AFM-SMFS) and macroscale lap-shear experiments both demonstrated that the PLBs led to strong adhesion that is up to ∼10 times greater than the STPBs, which is attributed to the enriched chain entanglement between the probing polymer and the brushes. We envisage that our results will pave the way towards a new materials design for strong adhesives and nanocomposites. 
    more » « less
  3. Abstract Modification of a surface with polymer brushes has emerged as an effective approach to tune the properties of a substrate. Brushes grown from an inimer‐containing cross‐linkable polymer coating provide significant advantages compared to other “grafting‐from” methods, such as improved stability, increased grafting density, and the potential to control the grafting density. So far, the inimer coating method has only been applied for surface‐initiated controlled radical polymerizations. In this work, an approach is presented for the fabrication of a stable cross‐linked ultra‐thin polymer coating containing hydroxyl groups which serve as initiating sites for surface‐initiated ring‐opening polymerization (SI‐ROP). The polymers used for the fabrication of the coatings consist of 2‐((tetrahydro‐2H‐pyran‐2‐yl)oxy)ethyl methacrylate (THPEMA), a small fraction of a cross‐linkable unit, and a diluent styrene. Three coatings with varying THPEMA and styrene content are fabricated, and poly(dimethyl siloxane) (PDMS) and poly(caprolactone) (PCL) brushes are grown by SI‐ROP of hexamethylcyclotrisiloxane (D3), and ε‐caprolactone respectively. The brushes are characterized by atomic force microscopy (AFM), X‐ray photoelectron spectroscopy (XPS), static contact angle measurements, ellipsometry and size exclusion chromatography (SEC). The results demonstrate a well‐controlled ROP of D3and ability to control grafting density by tuning the THPEMA content of the coatings. 
    more » « less
  4. Abstract We report a novel glycan array architecture that binds the mannose‐specific glycan binding protein, concanavalin A (ConA), with sub‐femtomolar avidity. A new radical photopolymerization developed specifically for this application combines the grafted‐from thiol–(meth)acrylate polymerization with thiol–ene chemistry to graft glycans to the growing polymer brushes. The propagation of the brushes was studied by carrying out this grafted‐to/grafted‐from radical photopolymerization (GTGFRP) at >400 different conditions using hypersurface photolithography, a printing strategy that substantially accelerates reaction discovery and optimization on surfaces. The effect of brush height and the grafting density of mannosides on the binding of ConA to the brushes was studied systematically, and we found that multivalent and cooperative binding account for the unprecedented sensitivity of the GTGFRP brushes. This study further demonstrates the ease with which new chemistry can be tailored for an application as a result of the advantages of hypersurface photolithography. 
    more » « less
  5. Abstract We report a novel glycan array architecture that binds the mannose‐specific glycan binding protein, concanavalin A (ConA), with sub‐femtomolar avidity. A new radical photopolymerization developed specifically for this application combines the grafted‐from thiol–(meth)acrylate polymerization with thiol–ene chemistry to graft glycans to the growing polymer brushes. The propagation of the brushes was studied by carrying out this grafted‐to/grafted‐from radical photopolymerization (GTGFRP) at >400 different conditions using hypersurface photolithography, a printing strategy that substantially accelerates reaction discovery and optimization on surfaces. The effect of brush height and the grafting density of mannosides on the binding of ConA to the brushes was studied systematically, and we found that multivalent and cooperative binding account for the unprecedented sensitivity of the GTGFRP brushes. This study further demonstrates the ease with which new chemistry can be tailored for an application as a result of the advantages of hypersurface photolithography. 
    more » « less