Hydrogen sulfide (H2S) exhibits protective effects in cardiovascular disease such as myocardial ischemia/reperfusion (I/R) injury, cardiac hypertrophy, and atherosclerosis. Despite these findings, its mechanism of action remains elusive. Recent studies suggest that H2S can modulate protein activity through redox-based post-translational modifications of protein cysteine residues forming hydropersulfides (RSSH). Furthermore, emerging evidence indicates that reactive sulfur species, including RSSH and polysulfides, exhibit cardioprotective action. However, it is not clear yet whether there are any pharmacological differences in the use of H2S vs. RSSH and/or polysulfides. This study aims to examine the differing cardioprotective effects of distinct reactive sulfur species (RSS) such as H2S, RSSH, and dialkyl trisulfides (RSSSR) compared with canonical ischemic post-conditioning in the context of a Langendorff ex-vivo myocardial I/R injury model. For the first time, a side-by-side study has revealed that exogenous RSSH donation is a superior approach to maintain post-ischemic function and limit infarct size when compared with other RSS and mechanical post-conditioning. Our results also suggest that RSSH preserves mitochondrial respiration in H9c2 cardiomyocytes exposed to hypoxia-reoxygenation via inhibition of oxidative phosphorylation while preserving cell viability.
more »
« less
Organelle-Targeted Fluorescent Probes for Sulfane Sulfur Species
Sulfane sulfurs, which include hydropersulfides (RSSH), hydrogen polysulfides (H2Sn, n > 1), and polysulfides (RSnR, n > 2), play important roles in cellular redox biology and are closely linked to hydrogen sulfide (H2S) signaling. While most studies on sulfane sulfur detection have focused on sulfane sulfurs in the whole cell, increasing the recognition of the effects of reactive sulfur species on the functions of various subcellular organelles has emerged. This has driven a need for organelle-targeted detection methods. However, the detection of sulfane sulfurs, particularly of RSSH and H2Sn, in biological systems is still a challenge due to their low endogenous concentrations and instabilities. In this review, we summarize the development and design of organelle-targeted fluorescent sulfane sulfur probes, examine their organelle-targeting strategies and choices of fluorophores (e.g., ratiometric, near-infrared, etc.), and discuss their mechanisms and ability to detect endogenous and exogenous sulfane sulfur species. We also present the advantages and limitations of the probes and propose directions for future work on this topic.
more »
« less
- Award ID(s):
- 2100870
- PAR ID:
- 10404483
- Date Published:
- Journal Name:
- Antioxidants
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 2076-3921
- Page Range / eLocation ID:
- 590
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite their biological significance, the study of hydropersulfides (RSSH) is often limited due to their inherent instability. Here, we introduce arylsulfonothioates as thiol activated RSSH donors and provide insight into cellular reactive sulfur species homeostasis. These precursors persulfidate physiologically relevant thiols (RSH) to form the corresponding RSSH. Real-time monitoring of hydrogen sulfide (H2S) generation via membrane inlet mass spectrometry (MIMS) was employed to follow RSSH production, revealing that electron-donating aryl substituents marginally slow RSSH release rates, whereas electron-withdrawing substituents slightly accelerate release. Furthermore, arylsulfonothioates with strong electron-withdrawing substituents offer superior protection against doxorubicin (DOX)-induced cardiotoxicity. Experiments using H9c2 cardiomyocytes affirmed the cell-permeability of arylsulfonothioates and their ability to increase intracellular RSSH levels and protein persulfidation levels. Notably, we observe the excretion of RSSH into the extracellular medium. Further investigations revealed the involvement of the cystine/glutamate antiporter SLC7A11, as cotreatment with its inhibitor, sulfasalazine, significantly reduce extracellular RSSH release. H9c2 cells exhibit tolerance to arylsulfonothioate 1g with an electronwithdrawing 4-cyano group at 1 mM; however, inhibition of the cystine antiporter results in a minor decrease in cell viability. Under oxidative stress conditions induced by DOX or hydrogen peroxide (H2O2), cotreatment with 1g diminishes the excretion of RSSH and confers cytoprotection against DOX or H2O2-mediated toxicity. Our findings show adaptive cellular responses to RSSH levels, demonstrating excretion under elevated conditions to maintain redox homeostasis and intracellular retention as a protective response during oxidative stress.more » « less
-
Many transition-metal-oxide-based catalysts have been investigated to chemically bind soluble lithium polysulfides and accelerate their redox kinetics in lithium-sulfur (Li-S) battery chemistry. However, the intrinsic poor electrical conductivities of these oxides restrict their catalytic performance, consequently limiting the sulfur utilization and the rate performance of Li-S batteries. Herein, we report a freestanding electrocatalytic sulfur host consisting of hydrogen-treated VO2 nanoparticles (H-VO2) anchored on nitrogen-doped carbonized bacterial cellulose aerogels (N-CBC). The hydrogen treatment enables the formation and stabilization of the rutile VO2(R) phase with metallic conductivity at room temperature, significantly enhancing its catalytic capability compared to the as-synthesized insulative VO2(M) phase. Several measurements characterize the electrocatalytic performance of this unique H-VO2@N-CBC structure. In particular, the two kinetic barriers between S8, polysulfides, and Li2S are largely reduced by 28.2 and 43.3 kJ/mol, respectively. Accordingly, the Li-S battery performance, in terms of sulfur utilization and charge/discharge rate, is greatly improved. This work suggests an effective strategy to develop conductive catalysts based on a typical transition metal oxide (VO2) for Li-S batteries.more » « less
-
Nucleophilic 1,2-aminothiol compounds readily reduce typically-insoluble elemental sulfur to polysulfides in both water and nonpolar organic solvents. The resulting anionic polysulfide species are stabilized through hydrogen-bonding interactions with the proximal amine moieties. These interactions can facilitate sulfur transfer to alkenes.more » « less
-
Organelles feature characteristic lipid compositions that lead to differences in membrane properties. In cells, membrane ordering and fluidity are commonly measured using the solvatochromic dye Laurdan, whose fluorescence is sensitive to lipid packing. As a general lipophilic dye, Laurdan stains all hydrophobic environments in cells; therefore, it is challenging to characterize membrane properties in specific organelles or assess their responses to pharmacological treatments in intact cells. Here, we describe the synthesis and application of Laurdan-derived probes that read out the membrane packing of individual cellular organelles. The set of organelle-targeted Laurdans (OTL) localizes to the ER, mitochondria, lysosomes, and Golgi compartments with high specificity while retaining the spectral resolution needed to detect biological changes in membrane ordering. We show that ratiometric imaging with OTLs can resolve membrane heterogeneity within organelles as well as changes in lipid packing resulting from inhibition of trafficking or bioenergetic processes. We apply these probes to characterize organelle-specific responses to saturated lipid stress. While the ER and lysosomal membrane fluidity is sensitive to exogenous saturated fatty acids, that of mitochondrial membranes is protected. We then use differences in ER membrane fluidity to sort populations of cells based on their fatty acid diet, highlighting the ability of organelle-localized solvatochromic probes to distinguish between cells based on their metabolic state. These results expand the repertoire of targeted membrane probes and demonstrate their application in interrogating lipid dysregulation.more » « less
An official website of the United States government

