Abstract Non‐covalent chalcogen bond (ChB) interactions have found utility in many fields, including catalysis, organic semiconductors, and crystal engineering. In this study, the transition stabilizing effects of ChB interactions of oxygen and sulfur were experimentally measured using a series of molecular rotors. The rotors were designed to form ChB interactions in their bond rotation transition states. This enabled the kinetic influences to be assessed by monitoring changes in the rotational barriers. Despite forming weaker ChB interactions, the smaller chalcogens were able to stabilize transition states and had measurable kinetic effects on the rotational barriers. Sulfur stabilized the bond rotation transition state by as much as −7.2 kcal/mol without electron‐withdrawing groups. The key was to design a system where the sulfur ‐hole was aligned with the lone pairs of the chalcogen bond acceptor. Oxygen rotors also could form transition state stabilizing ChB interactions but required electron‐withdrawing groups. For both oxygen and sulfur ChB interactions, a strong correlation was observed between transition state stabilizing abilities and electrostatic potential (ESP) of the chalcogen, providing a useful predictive parameter for the rational design of future ChB systems.
more »
« less
Accelerated reduction and solubilization of elemental sulfur by 1,2-aminothiols
Nucleophilic 1,2-aminothiol compounds readily reduce typically-insoluble elemental sulfur to polysulfides in both water and nonpolar organic solvents. The resulting anionic polysulfide species are stabilized through hydrogen-bonding interactions with the proximal amine moieties. These interactions can facilitate sulfur transfer to alkenes.
more »
« less
- Award ID(s):
- 2047045
- PAR ID:
- 10317805
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 57
- Issue:
- 93
- ISSN:
- 1359-7345
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The interactions between transition metals and sulfur have long been studied for potential applications in catalysis and energy storage and due to the relevance of these motifs in biological and geological systems. Complexes with sulfur-containing ligands can undergo redox transformations centered on sulfur as well as at the metal. Sulfur also readily catenates with other sulfur centers to form polysulfur motifs. Here, the synthesis and structures of notable examples of metal complexes with sulfur-containing ligands (sulfido, polysulfido, and polysulfanido) are described. Aspects of sulfur-centered redox, including spectroscopic and structural considerations, and future research opportunities are highlighted.more » « less
-
Despite great promise as next-generation high-capacity energy storage devices, lithium–sulfur batteries still face technical challenges in long-term cyclability. With their porous structures and facile synthesis, metal–organic frameworks (MOFs) are tunable platforms for understanding polysulfide redox and can serve as effective sulfur hosts for lithium–sulfur batteries. This feature article describes our design strategies to tailor MOF properties such as polysulfide affinity, ionic conductivity, and porosity for promoting active material utilization and charge transport efficiency. We also present engineering approaches for implementing MOF-based sulfur cathodes for lithium–sulfur batteries with high volumetric density and under low temperature operation. Our studies provide fundamental insights into sulfur–host interactions and polysulfide electrochemistry in the presence of porous matrices, inspiring future designs of advanced batteries.more » « less
-
Sulfur-containing biomolecules such as [Fe-S] clusters, thiamin, biotin, molybdenum cofactor, and sulfur-containing tRNA nucleosides are essential for various biochemical reactions. The amino acid l-cysteine serves as the major sulfur source for the biosynthetic pathways of these sulfur-containing cofactors in prokaryotic and eukaryotic systems. The first reaction in the sulfur mobilization involves a class of pyridoxal-5′-phosphate (PLP) dependent enzymes catalyzing a Cys:sulfur acceptor sulfurtransferase reaction. The first half of the catalytic reaction involves a PLP-dependent single bondS bond cleavage, resulting in a persulfide enzyme intermediate. The second half of the reaction involves the subsequent transfer of the thiol group to a specific acceptor molecule, which is responsible for the physiological role of the enzyme. Structural and biochemical analysis of these Cys sulfurtransferase enzymes shows that specific protein-protein interactions with sulfur acceptors modulate their catalytic reactivity and restrict their biochemical functions.more » « less
-
Abstract Metal‐sulfur batteries are a promising next‐generation energy storage technology, offering high theoretical energy densities with low cost and good sustainability. An active area of research is the development of electrolytes that address unwanted migration of sulfur and intermediate species known as polysulfides during operation of metal‐sulfur batteries, a phenomenon that leads to low energy efficiency and short life‐spans. A particular class of electrolytes, gel polymer electrolytes, are especially attractive for their ability to repel polysulfides on the basis of structure, electrostatics, and other polymer properties. Herein, within the context of magnesium‐ and lithium‐sulfur batteries, we investigate the impact of gel polymer electrolyte cation solvation capacity, a property related to network dielectric constant and chemistry, on sulfur/polysulfide‐polymer interactions, an understudied property‐performance relationship. Polymers with lower cation solvation capacity are found to permanently absorb less polysulfide active material, which increases sulfur utilization for Li−S batteries and significantly increases charge efficiency and life‐span for Li−S and Mg−S batteries.more » « less
An official website of the United States government

