Herbivory is common in mammals, yet our understanding of detoxification processes used by mammals to biotransform plant secondary compounds (PSCs) is limited. Specialist herbivores are thought to have evolved detoxification mechanisms that rely more heavily on energetically cheap Phase I biotransformation reactions to process high levels of PSCs in their diets. We explored this hypothesis by comparing the urinary metabolite patterns of two specialist herbivores (genus
Hybridization is a common process that has broadly impacted the evolution of multicellular eukaryotes; however, how ecological factors influence this process remains poorly understood. Here, we report the findings of a 3-year recapture study of the Bryant’s woodrat (Neotoma bryanti) and desert woodrat (Neotoma lepida), two species that hybridize within a creosote bush (Larrea tridentata) shrubland in Whitewater, CA, USA. We used a genotype-by-sequencing approach to characterize the ancestry distribution of individuals across this hybrid zone coupled with Cormack–Jolly–Seber modeling to describe demography. We identified a high frequency of hybridization at this site with ~40% of individuals possessing admixed ancestry, which is the result of multigenerational backcrossing and advanced hybrid-hybrid crossing. F1, F2, and advanced generation hybrids had apparent survival rates similar to parental N. bryanti, while parental and backcross N. lepida had lower apparent survival rates and were far less abundant. Compared to bimodal hybrid zones where hybrids are often rare and selected against, we find that hybrids at Whitewater are common and have comparable survival to the dominant parental species, N. bryanti. The frequency of hybridization at Whitewater is therefore likely limited by the abundance of the less common parental species, N. lepida, rather than selection against hybrids.
more » « less- Award ID(s):
- 1656497
- NSF-PAR ID:
- 10404529
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Evolution
- Volume:
- 77
- Issue:
- 4
- ISSN:
- 0014-3820
- Format(s):
- Medium: X Size: p. 959-970
- Size(s):
- p. 959-970
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Neotoma) .Neotoma stephensi is an obligate specialist on one‐seeded juniper (Juniperus monosperma ).Neotoma lepida is a generalist forager across its range, yet populations in the Great Basin specialize on Utah juniper (J. osteosperma ). While both juniper species have high levels of terpenes, the terpene profiles and quantities differ between the two. Individuals from both woodrat species were fed diets of each juniper in a cross‐over design. Urine, collected over a 24‐h period, was extracted and analyzed in an untargeted metabolomics approach using both GC‐MS and HPLC‐MS/MS. The obligate specialistN. stephensi excreted a unique pattern of Phase I metabolites when fed its native juniper, whileN. lepida excreted a unique pattern of Phase II metabolites when fed its native juniper. Both woodrat species utilized the Phase II metabolic pathway of glucuronidation more heavily when consuming the more chemically diverseJ. osteosperma , andN. stephensi utilized less glucuronidation thanN. lepida when consumingJ. monosperma . These results are consistent with the hypothesis that obligate specialists may have evolved unique and efficient biotransformation mechanisms for dealing with PSCs in their diet. -
Abstract Hybridization can profoundly affect the genomic composition and phenotypes of closely related species, and provides an opportunity to identify mechanisms that maintain reproductive isolation between species. Recent evidence suggests that hybridization outcomes within a species pair can vary across locations. However, we still do not know how variable outcomes of hybridization are across geographic replicates, and what mechanisms drive that variation. In this study, we described hybridization outcomes across 27 locations in the North Fork Shoshone River basin (Wyoming, USA) where native Yellowstone cutthroat trout and introduced rainbow trout co‐occur. We used genomic data and hierarchical Bayesian models to precisely identify ancestry of hybrid individuals. Hybridization outcomes varied across locations. In some locations, only rainbow trout and advanced backcrossed hybrids towards rainbow trout were present, while trout in other locations had a broader range of ancestry, including both parental species and first‐generation hybrids. Later‐generation intermediate hybrids were rare relative to backcrossed hybrids and rainbow trout individuals. Using an individual‐based simulation, we found that outcomes of hybridization in the North Fork Shoshone River basin deviate substantially from what we would expect under null expectations of random mating and no selection against hybrids. Since this deviation implies that some mechanisms of reproductive isolation function to maintain parental taxa and a diversity of hybrid types, we then modelled hybridization outcomes as a function of environmental variables and stocking history that are likely to affect prezygotic barriers to hybridization. Variables associated with history of fish stocking were the strongest predictors of hybridization outcomes, followed by environmental variables that might affect overlap in spawning time and location.
-
Abstract Range expansion and contraction are among the most common biotic responses to changing environmental conditions, yet much is to be learned about the mechanisms that underlie range-edge population dynamics, especially when those areas are points of secondary contact between closely related species. Here, we present field-measured parentage data that document the reproductive outcomes of changes in mate availability at a secondary contact zone between two species of woodrat in the genus Neotoma. Changes in mate availability resulted from drought-driven differential survival between the species and their hybrids. As the availability of conspecific mates declined, rates of hybridization increased, leading to the accumulation of admixed individuals in the zone of contact. Patterns of reproductive success in the wild appear to be the result of a combination of both pre-mating isolation and post-zygotic selection resulting from genomic incompatibilities between the parental lineages. Evidence of asymmetric mate preference between the parental lineages came from both skewed reproductive output in the field and laboratory preference trials. Moreover, partial genomic incompatibility was evident from the near-zero reproductive success of F1 males and because nearly all surviving hybrids had one pure parent. Nonetheless, the high reproductive success of F1 females and backcrossing in both parental directions allow for introgression between the parental species. These findings reveal how climate change may alter evolutionary outcomes for species at the edge of their ranges through an interplay of behavioral, demographic, and genetic mechanisms.
-
Abstract When organisms experience secondary contact after allopatric divergence, genomic regions can introgress differentially depending on their relationships with adaptation, reproductive isolation, recombination, and drift. Analyses of genome‐wide patterns of divergence and introgression could provide insight into the outcomes of hybridization and the potential relationship between allopatric divergence and reproductive isolation. Here, we generate population genetic data (26,262 SNPs; 353 individuals) using a reduced‐representation sequencing approach to quantify patterns of ancestry, differentiation, and introgression between a pair of ecologically distinct mammals—the desert woodrat (
N .lepida ) and Bryant's woodrat (N .bryanti )—that hybridize at a sharp ecotone in southern California. Individual ancestry estimates confirmed that hybrids were rare in this bimodal hybrid zone, and entirely consisted of a few F1individuals and a broad range of multigenerational backcrosses. Genomic cline analyses indicated more than half of loci had elevated introgression from one genomic background into the other. However, introgression was not associated with relative or absolute measures of divergence, and loci with extreme values for both were not typically found near detoxification enzymes previously implicated in dietary specialization for woodrats. The decoupling of differentiation and introgression suggests that processes other than adaptation, such as drift, may underlie the extreme clines at this contact zone. -
Abstract Hybridization between species provides unique opportunities to understand evolutionary processes that are linked to reproductive isolation and, ultimately, speciation. However, the extrinsic factors that limit hybridization are poorly understood for most animal systems. Although the spatial ecology of individuals in natural habitats is fundamental to shaping reproductive success and survival, analyses of the spatial ecology of hybrids and their parental groups are rarely reported. Here, we used radiotelemetry to monitor wild rattlesnakes across an interspecific hybrid zone (Crotalus scutulatus and Crotalus viridis) and measured movement parameters and space use (utilization distributions) of individuals to evaluate the hypothesis that hybridization resulted in transgressive or atypical movement patterns. Unexpectedly, of the spatial metrics we investigated, we found that hybrids were very similar to parental individuals. Nonetheless, hybrids did show increased patchiness of core utilization distributions, but this result is likely to be driven by increased habitat patchiness in the hybrid zone. Overall, we did not find evidence for overt extrinsic barriers to hybridization associated with spatial ecology; thus, we suggest that the close evolutionary history between the two parental species and their ecological and behavioural similarities are likely to increase the probability of hybridization events in this unique region of New Mexico.