skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Differences in dietary composition and preference maintained despite gene flow across a woodrat hybrid zone
Abstract Ecotones, characterized by adjacent yet distinct biotic communities, provide natural laboratories in which to investigate how environmental selection influences the ecology and evolution of organisms. For wild herbivores, differential plant availability across sharp ecotones may be an important source of dietary‐based selection.We studied small herbivore diet composition across a sharp ecotone where two species of woodrat,Neotoma bryantiandN.lepida, come into secondary contact with one another and hybridize. We quantified woodrat dietary preference through trnLmetabarcoding of field‐collected fecal pellets and experimental choice trials. Despite gene flow, parentalN. bryantiandN. lepidamaintain distinct diets across this fine spatial scale, and across temporal scales that span both wet and dry conditions.Neotoma bryantimaintained a more diverse diet, withFrangula californica(California coffeeberry) making up a large portion of its diet.Neotoma lepidamaintains a less diverse diet, withPrunus fasciculata(desert almond) comprising more than half of its diet. BothF. californicaandP. fasciculataare known to produce potentially toxic plant secondary compounds (PSCs), which should deter herbivory, yet these plants have relatively high nutritional value as measured by crude protein content.Neotoma bryantiandN. lepidaconsumedF. californicaandP. fasciculata, respectively, in greater abundance than these plants are available on the landscape—indicating dietary selection. Finally, experimental preference trials revealed thatN. bryantiexhibited a preference forF. californica, whileN. lepidaexhibited a relatively stronger preference forP. fasciculata. We find thatN. bryantiexhibit a generalist herbivore strategy relative toN. lepida, which exhibit a more specialized feeding strategy in this study system.Our results suggest that woodrats respond to fine‐scale environmental differences in plant availability that may require different metabolic strategies in order to balance nutrient acquisition while minimizing exposure to potentially toxic PSCs.  more » « less
Award ID(s):
1826801
PAR ID:
10452925
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
11
Issue:
9
ISSN:
2045-7758
Page Range / eLocation ID:
p. 4909-4919
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Little is known about the tolerances of mammalian herbivores to plant specialized metabolites across landscapes.We investigated the tolerances of two species of herbivorous woodrats,Neotoma lepida(desert woodrat) andNeotoma bryanti(Bryant's woodrat) to creosote bushLarrea tridentata, a widely distributed shrub with a highly toxic resin. Woodrats were sampled from 13 locations both with and without creosote bush across a 900 km transect in the US southwest. We tested whether these woodrat populations consume creosote bush using plant metabarcoding of faeces and quantified their tolerance to creosote bush through feeding trials using chow amended with creosote resin.Toxin tolerance was analysed in the context of population structure across collection sites with microsatellite analyses. Genetic differentiation among woodrats collected from different locations was minimal within either species. Tolerance differed substantially between the two species, withN. lepidapersisting 20% longer thanN. bryantiin feeding trials with creosote resin. Furthermore, in both species, tolerance to creosote resin was similar among woodrats near or within creosote bush habitat. In both species, woodrats collected >25 km from creosote had markedly lower tolerances to creosote resin compared to animals from within the range of creosote bush.The results imply that mammalian herbivores are adapted to the specialized metabolites of plants in their diet, and that this tolerance can extend several kilometres outside of the range of dietary items. That is, direct ecological exposure to the specialized chemistry of particular plant species is not a prerequisite for tolerance to these compounds. These findings lay the groundwork for additional studies to investigate the genetic mechanisms underlying toxin tolerance and to identify how these mechanisms are maintained across landscape‐level scales in mammalian herbivores. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. Abstract Hybridization is a common process that has broadly impacted the evolution of multicellular eukaryotes; however, how ecological factors influence this process remains poorly understood. Here, we report the findings of a 3-year recapture study of the Bryant’s woodrat (Neotoma bryanti) and desert woodrat (Neotoma lepida), two species that hybridize within a creosote bush (Larrea tridentata) shrubland in Whitewater, CA, USA. We used a genotype-by-sequencing approach to characterize the ancestry distribution of individuals across this hybrid zone coupled with Cormack–Jolly–Seber modeling to describe demography. We identified a high frequency of hybridization at this site with ~40% of individuals possessing admixed ancestry, which is the result of multigenerational backcrossing and advanced hybrid-hybrid crossing. F1, F2, and advanced generation hybrids had apparent survival rates similar to parental N. bryanti, while parental and backcross N. lepida had lower apparent survival rates and were far less abundant. Compared to bimodal hybrid zones where hybrids are often rare and selected against, we find that hybrids at Whitewater are common and have comparable survival to the dominant parental species, N. bryanti. The frequency of hybridization at Whitewater is therefore likely limited by the abundance of the less common parental species, N. lepida, rather than selection against hybrids. 
    more » « less
  3. Abstract Seasonal diet shifts and migration are key components of large herbivore population dynamics, but we lack a systematic understanding of how these behaviours are distributed on a macroecological scale.The prevalence of seasonal strategies is likely related to herbivore body size and feeding guild, and may also be influenced by properties of the environment, such as soil nutrient availability and climate seasonality.We evaluated the distribution of seasonal dietary shifts and migration across large‐bodied mammalian herbivores and determined how these behaviours related to diet, body size and environment.We found that herbivore strategies were consistently correlated with their traits: seasonal diet shifts were most prevalent among mixed feeding herbivores and migration among grazers and larger herbivores. Seasonality also played a role, particularly for migration, which was more common at higher latitudes. Both dietary shifts and migration were more widespread among extratropical herbivores, which also exhibited more intermediate diets and body sizes.Our findings suggest that strong seasonality in extratropical systems imposes pressure on herbivores, necessitating widespread behavioural responses to navigate seasonal resource bottlenecks. It follows that tropical and extratropical herbivores may have divergent responses to global change, with intensifying herbivore pressure in extratropical systems contrasting with diminishing herbivore pressure in tropical systems. 
    more » « less
  4. Abstract Theory predicts that trophic specialization (i.e. low dietary diversity) should make consumer populations sensitive to environmental disturbances. Yet diagnosing specialization is complicated both by the difficulty of precisely quantifying diet composition and by definitional ambiguity: what makes a diet ‘diverse’?We sought to characterize the relationship between taxonomic dietary diversity (TDD) and phylogenetic dietary diversity (PDD) in a species‐rich community of large mammalian herbivores in a semi‐arid East African savanna. We hypothesized that TDD and PDD would be positively correlated within and among species, because taxonomically diverse diets are likely to include plants from many lineages.By using DNA metabarcoding to analyse 1,281 faecal samples collected across multiple seasons, we compiled high‐resolution diet profiles for 25 sympatric large‐herbivore species. For each of these populations, we calculated TDD and PDD with reference to a DNA reference library for local plants.Contrary to our hypothesis, measures of TDD and PDD were either uncorrelated or negatively correlated with each other. Thus, these metrics reflect distinct dimensions of dietary specialization both within and among species. In general, grazers and ruminants exhibited greater TDD, but lower PDD, than did browsers and non‐ruminants. We found significant seasonal variation in TDD and/or PDD for all but four species (Grevy's zebra, buffalo, elephant, Grant's gazelle); however, the relationship between TDD and PDD was consistent across seasons for all but one of the 12 best‐sampled species (plains zebra).Our results show that taxonomic generalists can be phylogenetic specialists, and vice versa. These two dimensions of dietary diversity suggest contrasting implications for efforts to predict how consumers will respond to climate change and other environmental perturbations. For example, populations with low TDD may be sensitive to phylogenetically ‘random’ losses of food species, whereas populations with low PDD may be comparatively more sensitive to environmental changes that disadvantage entire plant lineages—and populations with low dietary diversity in both taxonomic and phylogenetic dimensions may be most vulnerable of all. 
    more » « less
  5. Abstract Megafauna assemblages have declined or disappeared throughout much of the world, and many efforts are underway to restore them. Understanding the trophic ecology of such reassembling systems is necessary for predicting recovery dynamics, guiding management, and testing general theory. Yet, there are few studies of recovering large‐mammal communities, and fewer still that have characterized food‐web structure with high taxonomic resolution.In Gorongosa National Park, large herbivores have rebounded from near‐extirpation following the Mozambican Civil War (1977–1992). However, contemporary community structure differs radically from the prewar baseline: medium‐sized ungulates now outnumber larger bodied species, and several apex carnivores remain locally extinct.We used DNA metabarcoding to quantify diet composition of Gorongosa’s 14 most abundant large‐mammal populations. We tested five hypotheses: (i) the most abundant populations exhibit greatest individual‐level dietary variability; (ii) these populations also have the greatest total niche width (dietary diversity); (iii) interspecific niche overlap is high, with the diets of less‐abundant species nested within those of more‐abundant species; (iv) partitioning of forage species is stronger in more structurally heterogeneous habitats; and (v) selectivity for plant taxa converges within guilds and digestive types, but diverges across them.Abundant (and narrow‐mouthed) populations exhibited higher among‐individual dietary variation, but not necessarily the greatest dietary diversity. Interspecific dietary overlap was high, especially among grazers and in structurally homogenous habitat, whereas niche separation was more pronounced among browsers and in heterogeneous habitat. Patterns of selectivity were similar for ruminants—grazers and browsers alike—but differed between ruminants and non‐ruminants.Synthesis. The structure of this recovering food web was consistent with several hypotheses predicated on competition, habitat complexity, and herbivore traits, but it differed from patterns observed in more intact assemblages. We propose that intraspecific competition in the fastest‐recovering populations has promoted individual variation and a more nested food web, wherein rare species use subsets of foods eaten by abundant species, and that this scenario is reinforced by weak predation pressure. Future work should test these conjectures and analyse how the taxonomic dietary niche axis studied here interacts with other mechanisms of diet partitioning to affect community reassembly following wildlife declines. 
    more » « less