skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Athermal resistance to phase interface motion due to precipitates: A phase field study
Award ID(s):
1943710 2246991
NSF-PAR ID:
10404608
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Acta Materialia
Volume:
242
Issue:
C
ISSN:
1359-6454
Page Range / eLocation ID:
118489
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Athermal resistance to the motion of a phase interface due to a precipitate is investigated. The coupled phase field and elasticity equations are solved for the phase transformation (PT). The volumetric misfit strain due to the precipitate is included using the error and rectangular functions. Due to the presence of precipitates, the critical thermal driving forces remarkably differ between the direct and reverse PTs, resulting in a hysteresis behavior. For the precipitate radius small compared to the interface width, the misfit strain does not practically show any effect on the critical thermal driving force. Also, the critical thermal driving force value nonlinearly increases vs. the precipitate concentration for both the direct and reverse PTs. Change in the precipitate surface energy significantly changes the PT morphology and the critical thermal driving forces. The critical thermal driving force shows dependence on the misfit strain for large precipitate sizes compared to the interface width. For both the constant surface energy (CSE) and variable surface energy (VSE) boundary conditions (BCs) at the precipitate surface, the critical thermal driving force linearly increases vs. the misfit strain coefficient for the direct PT while it is almost independent of it for the reverse PT. For larger precipitates, the critical thermal driving force nonlinearly increases vs. the precipitate concentration for the direct PT. For the reverse PT, its value for the CSE BCs linearly increases vs. the precipitate concentration while it is independent of the precipitate concentration for the VSE BCs. Also, for any concentration, the VSE BCs result in higher thermal critical driving forces, a smaller hysteresis range, and a larger transformation rate. The critical microstructure and thermal driving forces are validated using the thermodynamic phase equilibrium condition for stationary interfaces. 
    more » « less
  2. Athermal resistance to the motion of a phase interface due to a precipitate is investigated. The coupled phase field and elasticity equations are solved for the phase transformation (PT). The volumetric misfit strain due to the precipitate is included using the error and rectangular functions. Due to the presence of precipitates, the critical thermal driving forces remarkably differ between the direct and reverse PTs, resulting in a hysteresis behavior. For the precipitate radius small compared to the interface width, the misfit strain does not practically show any effect on the critical thermal driving force. Also, the critical thermal driving force value nonlinearly increases vs. the precipitate concentration for both the direct and reverse PTs. Change in the precipitate surface energy significantly changes the PT morphology and the critical thermal driving forces. The critical thermal driving force shows dependence on the misfit strain for large precipitate sizes compared to the interface width. For both the constant surface energy (CSE) and variable surface energy (VSE) boundary conditions (BCs) at the precipitate surface, the critical thermal driving force linearly increases vs. the misfit strain coefficient for the direct PT while it is almost independent of it for the reverse PT. For larger precipitates, the critical thermal driving force nonlinearly increases vs. the precipitate concentration for the direct PT. For the reverse PT, its value for the CSE BCs linearly increases vs. the precipitate concentration while it is independent of the precipitate concentration for the VSE BCs. Also, for any concentration, the VSE BCs result in higher thermal critical driving forces, a smaller hysteresis range, and a larger transformation rate. The critical microstructure and thermal driving forces are validated using the thermodynamic phase equilibrium condition for stationary interfaces. 
    more » « less
  3. null (Ed.)
  4. Evolution of composition, rheology, and morphology during phase separation in complex fluids is highly coupled to rheological and mass transport processes within the emerging phases, and understanding this coupling is critical for materials design of multiphase complex fluids. Characterizing these dependencies typically requires careful measurement of a large number of equilibrium and transport properties that are difficult to measure in situ as phase separation proceeds. Here, we propose and demonstrate a high-throughput microscopy platform to achieve simultaneous, in situ mapping of time-evolving morphology and microrheology in phase separating complex fluids over a large compositional space. The method was applied to a canonical example of polyelectrolyte complex coacervation, whereby mixing of oppositely charged species leads to liquid–liquid phase separation into distinct solute-dense and dilute phases. Morphology and rheology were measured simultaneously and kinetically after mixing to track the progression of phase separation. Once equilibrated, the dense phase viscosity was determined to high compositional accuracy using passive probe microrheology, and the results were used to derive empirical relationships between the composition and viscosity. These relationships were inverted to reconstruct the dense phase boundary itself, and further extended to other mixture compositions. The resulting predictions were validated by independent equilibrium compositional measurements. This platform paves the way for rapid screening and formulation of complex fluids and (bio)macromolecular materials, and serves as a critical link between formulation and rheology for multi-phase material discovery. 
    more » « less