skip to main content


Title: Athermal resistance to phase interface motion due to precipitates: A phase field study
Athermal resistance to the motion of a phase interface due to a precipitate is investigated. The coupled phase field and elasticity equations are solved for the phase transformation (PT). The volumetric misfit strain due to the precipitate is included using the error and rectangular functions. Due to the presence of precipitates, the critical thermal driving forces remarkably differ between the direct and reverse PTs, resulting in a hysteresis behavior. For the precipitate radius small compared to the interface width, the misfit strain does not practically show any effect on the critical thermal driving force. Also, the critical thermal driving force value nonlinearly increases vs. the precipitate concentration for both the direct and reverse PTs. Change in the precipitate surface energy significantly changes the PT morphology and the critical thermal driving forces. The critical thermal driving force shows dependence on the misfit strain for large precipitate sizes compared to the interface width. For both the constant surface energy (CSE) and variable surface energy (VSE) boundary conditions (BCs) at the precipitate surface, the critical thermal driving force linearly increases vs. the misfit strain coefficient for the direct PT while it is almost independent of it for the reverse PT. For larger precipitates, the critical thermal driving force nonlinearly increases vs. the precipitate concentration for the direct PT. For the reverse PT, its value for the CSE BCs linearly increases vs. the precipitate concentration while it is independent of the precipitate concentration for the VSE BCs. Also, for any concentration, the VSE BCs result in higher thermal critical driving forces, a smaller hysteresis range, and a larger transformation rate. The critical microstructure and thermal driving forces are validated using the thermodynamic phase equilibrium condition for stationary interfaces.  more » « less
Award ID(s):
1904830
NSF-PAR ID:
10350114
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Athermal resistance to the motion of a phase interface due to a precipitate is investigated. The coupled phase field and elasticity equations are solved for the phase transformation (PT). The volumetric misfit strain due to the precipitate is included using the error and rectangular functions. Due to the presence of precipitates, the critical thermal driving forces remarkably differ between the direct and reverse PTs, resulting in a hysteresis behavior. For the precipitate radius small compared to the interface width, the misfit strain does not practically show any effect on the critical thermal driving force. Also, the critical thermal driving force value nonlinearly increases vs. the precipitate concentration for both the direct and reverse PTs. Change in the precipitate surface energy significantly changes the PT morphology and the critical thermal driving forces. The critical thermal driving force shows dependence on the misfit strain for large precipitate sizes compared to the interface width. For both the constant surface energy (CSE) and variable surface energy (VSE) boundary conditions (BCs) at the precipitate surface, the critical thermal driving force linearly increases vs. the misfit strain coefficient for the direct PT while it is almost independent of it for the reverse PT. For larger precipitates, the critical thermal driving force nonlinearly increases vs. the precipitate concentration for the direct PT. For the reverse PT, its value for the CSE BCs linearly increases vs. the precipitate concentration while it is independent of the precipitate concentration for the VSE BCs. Also, for any concentration, the VSE BCs result in higher thermal critical driving forces, a smaller hysteresis range, and a larger transformation rate. The critical microstructure and thermal driving forces are validated using the thermodynamic phase equilibrium condition for stationary interfaces. 
    more » « less
  2. In this paper, we perform concurrent atomistic-continuum (CAC) simulations to (i) characterize the internal stress induced by the microscale dislocation pileup at an atomically structured interface; (ii) decompose this stress into two parts, one of which is from the dislocations behind the pileup tip according to the Eshelby model and the other is from the dislocations at the pileup tip according to a super-dislocation model; and (iii) assess how such internal stresses contribute to the atomic-scale phase transformations (PTs), reverse PTs, and twinning. The main novelty of this work is to unify the atomistic description of the interface and the coarse-grained (CG) description of the lagging dislocations away from the interface within one single framework. Our major findings are: (a) the interface dynamically responds to a pileup by forming steps/ledges, the height of which is proportional to the number of dislocations arriving at the interface; (b) when the pre-sheared sample is compressed, a direct square-to-hexagonal PT occurs ahead of the pileup tip and eventually grows into a wedge shape; (c) upon a further increase of the loading, part of the newly formed hexagonal phase transforms back to the square phase. The square product phase resulting from this reverse PT forms a twin with respect to the initial square phase. All phase boundaries (PBs) and twin boundaries (TBs) are stationary and correspond to zero thermodynamic Eshelby driving forces; and (d) the stress intensity induced by a pileup consisting of 16 dislocations reduces the stress required for initiating a PT by a factor of 5.5, comparing with that in the sample containing no dislocations. This work is the first characterization of the behavior of PTs/twinning resulting from the reaction between a microscale dislocation slip and an atomically structured interface. 
    more » « less
  3. Pressure-induced phase transformations (PTs) in Si, the most important electronic material, have been broadly studied. However, strain-induced PTs in Si were never studied in situ. Here, we revealed in situ various important plastic strain-induced PT phenomena. A correlation between the particle size's direct and inverse Hall-Petch effect on yield strength and pressure for strain-induced PT is found. For 100 nm particles, strain-induced PT Si-I³Si-II initiates at 0.3 GPa versus 16.2 GPa under hydrostatic conditions; Si-I³Si-III PT starts at 0.6 GPa and does not occur under hydrostatic pressure. Pressure in small Si-II and Si-III regions is ~5-7 GPa higher than in Si-I. Retaining Si-II and single-phase Si-III at ambient pressure and obtaining reverse Si-II³Si-I PT demonstrates the possibilities of manipulating different synthetic paths. The obtained results corroborate the elaborated dislocation pileup-based mechanism and have numerous applications for developing economic defect-induced synthesis of nanostructured materials, surface treatment (polishing, turning, etc.), and friction. 
    more » « less
  4. null (Ed.)
    Abstract

    Precipitation strengthening of alloys by the formation of secondary particles (precipitates) in the matrix is one of the techniques used for increasing the mechanical strength of metals. Understanding the precipitation kinetics such as nucleation, growth, and coarsening of these precipitates is critical for evaluating their hardening effects and improving the yield strength of the alloy during heat treatment. To optimize the heat treatment strategy and accelerate alloy design, predicting precipitate hardening effects via numerical methods is a promising complement to trial-and-error-based experiments and the physics-based phase-field method stands out with the significant potential to accurately predict the precipitate morphology and kinetics. In this study, we present a phase-field model that captures the nucleation, growth, and coarsening kinetics of precipitates during isothermal heat treatment conditions. Thermodynamic data, diffusion coefficients, and misfit strain data from experimental or lower length-scale calculations are used as input parameters for the phase-field model. Classical nucleation theory is implemented to capture the nucleation kinetics. As a case study, we apply the model to investigate γ″ precipitation kinetics in Inconel 625. The simulated mean particle length, aspect ratio, and volume fraction evolution are in agreement with experimental data for simulations at 600 °C and 650 °C during isothermal heat treatment. Utilizing the meso-scale results from the phase-field simulations as input parameters to a macro-scale coherency strengthening model, the evolution of the yield strength during heat treatment was predicted. In a broader context, we believe the current study can provide practical guidance for applying the phase-field approach as a link in the multiscale modeling of material properties.

     
    more » « less
  5. Pressure-induced phase transformations (PTs) between numerous phases of Si, the most important electronic material, have been studied for decades. This is not the case for plastic strain-induced PTs. Here, we revealed in-situ various unexpected plastic strain-induced PT phenomena. Thus, for 100 nm Si, strain-induced PT Si-I to Si-II (and Si-I to Si-III) initiates at 0.4 GPa (0.6 GPa) versus 16.2 GPa (∞, since it does not occur) under hydrostatic conditions; for 30 nm Si, it is 6.1 GPa versus ∞. The predicted theoretical correlation between the direct and inverse Hall-Petch effect of the grain size on the yield strength and the minimum pressure for strain-induced PT is confirmed for the appearance of Si-II. Retaining Si-II at ambient pressure and obtaining reverse Si-II to Si-I PT are achieved, demonstrating the possibilities of manipulating different synthetic paths. 
    more » « less