ABSTRACT Sphingobium sp. strain AEW4 is a novel isolate from rhizosphere soil attached to the root of the American beachgrass Ammophila breviligulata . The genomic sequence consisted of 4,678,518 bp and 4,428 protein-coding sequences. Here we report the draft genome sequence of this strain and some initial insights on its plant growth-promoting capabilities.
more »
« less
Comparative genomics of the plant-growth promoting bacterium Sphingobium sp. strain AEW4 isolated from the rhizosphere of the beachgrass Ammophila breviligulata
Abstract Background The genus Sphingobium within the class Alpha-proteobacteria contains a small number of plant-growth promoting rhizobacteria (PGPR), although it is mostly comprised of organisms that play an important role in biodegradation and bioremediation in sediments and sandy soils. A Sphingobium sp. isolate was obtained from the rhizosphere of the beachgrass Ammophila breviligulata with a variety of plant growth-promoting properties and designated as Sphingobium sp. strain AEW4. Results Analysis of the 16S rRNA gene as well as full genome nucleotide and amino acid identities revealed that this isolate is most similar to Sphingobium xenophagum and Sphingobium hydrophobicum . Comparative genomics analyses indicate that the genome of strain AEW4 contains unique features that explain its relationship with a plant host as a PGPR, including pathways involved in monosaccharide utilization, fermentation pathways, iron sequestration, and resistance to osmotic stress. Many of these unique features are not broadly distributed across the genus. In addition, pathways involved in the metabolism of salicylate and catechol, phenyl acetate degradation, and DNA repair were also identified in this organism but not in most closely related organisms. Conclusion The genome of Sphingobium sp. strain AEW4 contains a number of distinctive features that are crucial to explain its role as a plant-growth promoting rhizobacterium, and comparative genomics analyses support its classification as a relevant Sphingobium strain involved in plant growth promotion of beachgrass and other plants.
more »
« less
- Award ID(s):
- 1645909
- PAR ID:
- 10404711
- Date Published:
- Journal Name:
- BMC Genomics
- Volume:
- 23
- Issue:
- 1
- ISSN:
- 1471-2164
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
‘CandidatusLiberibacter’ is a group of bacterial species that are obligate intracellular plant pathogens and cause Huanglongbing disease of citrus trees and Zebra Chip in potatoes. Here, we examined the extent of intra- and interspecific genetic diversity across the genus using comparative genomics. Our approach examined a wide set ofLiberibactergenome sequences including five pathogenic species and one species not known to cause disease. By performing comparative genomics analyses, we sought to understand the evolutionary history of this genus and to identify genes or genome regions that may affect pathogenicity. With a set of 52 genomes, we performed comparative genomics, measured genome rearrangement, and completed statistical tests of positive selection. We explored markers of genetic diversity across the genus, such as average nucleotide identity across the whole genome. These analyses revealed the highest intraspecific diversity amongst the ‘Ca.Liberibacter solanacearum’ species, which also has the largest plant host range. We identified sets of core and accessory genes across the genus and within each species and measured the ratio of nonsynonymous to synonymous mutations (dN/dS) across genes. We identified ten genes with evidence of a history of positive selection in theLiberibactergenus, including genes in the Tad complex, which have been previously implicated as being highly divergent in the ‘Ca.L. capsica’ species based on high values of dN.more » « less
-
Glass, Jennifer B (Ed.)ABSTRACT Marine macroalgae produce abundant and diverse polysaccharides, which contribute substantially to the organic matter exported to the deep ocean. Microbial degradation of these polysaccharides plays an important role in the turnover of macroalgal biomass. Various members of thePlanctomycetes-Verrucomicrobia-Chlamydia(PVC) superphylum are degraders of polysaccharides in widespread anoxic environments. In this study, we isolated a novel anaerobic bacterial strain NLcol2Tfrom microbial mats on the surface of marine sediments offshore Santa Barbara, CA, USA. Based on 16S ribosomal RNA (rRNA) gene and phylogenomic analyses, strain NLcol2Trepresents a novel species within thePontiellagenus in theKiritimatiellotaphylum (within the PVC superphylum). Strain NLcol2Tis able to utilize various monosaccharides, disaccharides, and macroalgal polysaccharides such as agar and ɩ-carrageenan. A near-complete genome also revealed an extensive metabolic capacity for anaerobic degradation of sulfated polysaccharides, as evidenced by 202 carbohydrate-active enzymes (CAZymes) and 165 sulfatases. Additionally, its ability of nitrogen fixation was confirmed by nitrogenase activity detected during growth on nitrogen-free medium, and the presence of nitrogenases (nifDKH) encoded in the genome. Based on the physiological and genomic analyses, this strain represents a new species of bacteria that may play an important role in the degradation of macroalgal polysaccharides and with relevance to the biogeochemical cycling of carbon, sulfur, and nitrogen in marine environments. Strain NLcol2T(= DSM 113125T= MCCC 1K08672T) is proposed to be the type strain of a novel species in thePontiellagenus, and the namePontiella agarivoranssp. nov. is proposed.IMPORTANCEGrowth and intentional burial of marine macroalgae is being considered as a carbon dioxide reduction strategy but elicits concerns as to the fate and impacts of this macroalgal carbon in the ocean. Diverse heterotrophic microbial communities in the ocean specialize in these complex polymers such as carrageenan and fucoidan, for example, members of theKiritimatiellotaphylum. However, only four type strains within the phylum have been cultivated and characterized to date, and there is limited knowledge about the metabolic capabilities and functional roles of related organisms in the environment. The new isolate strain NLcol2Texpands the known substrate range of this phylum and further reveals the ability to fix nitrogen during anaerobic growth on macroalgal polysaccharides, thereby informing the issue of macroalgal carbon disposal.more » « less
-
Thrash, J Cameron (Ed.)Paenibacillussp. RC80 was isolated from temperate deciduous forest soil in New England. The assembled genome is a single contig with 5,977,337 bp and 97.15% estimated completion. RC80 contains features for 2,3-butanediol dehydrogenase production and pathways involved in ethanol production.more » « less
-
O’Neill, Rachel (Ed.)Abstract Echinometra is the most widespread genus of sea urchin and has been the focus of a wide range of studies in ecology, speciation, and reproduction. However, available genetic data for this genus are generally limited to a few select loci. Here, we present a chromosome-level genome assembly based on 10x Genomics, PacBio, and Hi-C sequencing for Echinometra sp. EZ from the Persian/Arabian Gulf. The genome is assembled into 210 scaffolds totaling 817.8 Mb with an N50 of 39.5 Mb. From this assembly, we determined that the E. sp. EZ genome consists of 2n = 42 chromosomes. BUSCO analysis showed that 95.3% of BUSCO genes were complete. Ab initio and transcript-informed gene modeling and annotation identified 29,405 genes, including a conserved Hox cluster. E. sp. EZ can be found in high-temperature and high-salinity environments, and we therefore compared E. sp. EZ gene families and transcription factors associated with environmental stress response (“defensome”) with other echinoid species with similar high-quality genomic resources. While the number of defensome genes was broadly similar for all species, we identified strong signatures of positive selection in E. sp. EZ noncoding elements near genes involved in environmental response pathways as well as losses of transcription factors important for environmental response. These data provide key insights into the biology of E. sp. EZ as well as the diversification of Echinometra more widely and will serve as a useful tool for the community to explore questions in this taxonomic group and beyond.more » « less
An official website of the United States government

