skip to main content


Title: Q-Functionals For Value-Based Continuous Control
We present Q-functionals, an alternative architecture for continuous control deep reinforcement learning. Instead of returning a single value for a state-action pair, our network transforms a state into a function that can be rapidly evaluated in parallel for many actions, allowing us to efficiently choose high-value actions through sampling. This contrasts with the typical architecture of off-policy continuous control, where a policy network is trained for the sole purpose of selecting actions from the Q-function. We represent our action-dependent Q-function as a weighted sum of basis functions (Fourier, Polynomial, etc) over the action space, where the weights are state-dependent and output by the Q-functional network. Fast sampling makes practical a variety of techniques that require Monte-Carlo integration over Q-functions, and enables action-selection strategies besides simple value-maximization. We characterize our framework, describe various implementations of Q-functionals, and demonstrate strong performance on a suite of continuous control tasks.  more » « less
Award ID(s):
1844960 1717569 1955361
NSF-PAR ID:
10404719
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this thesis we propose novel estimation techniques for localization and planning problems, which are key challenges in long-term autonomy. We take inspiration in our methods from non-parametric estimation and use tools such as kernel density estimation, non-linear least-squares optimization, binary masking, and random sampling. We show that these methods, by avoiding explicit parametric models, outperform existing methods that use them. Despite the seeming differences between localization and planning, we demonstrate in this thesis that the problems share core structural similarities. When real or simulation-sampled measurements are expensive, noisy, or high variance, non-parametric estimation techniques give higher-quality results in less time. We first address two localization problems. In order to permit localization with a set of ad hoc-placed radios, we propose an ultra-wideband (UWB) graph realization system to localize the radios. Our system achieves high accuracy and robustness by using kernel density estimation for measurement probability densities, by explicitly modeling antenna delays, and by optimizing this combination with a non-linear least squares formulation. Next, in order to then support robotic navigation, we present a flexible system for simultaneous localization and mapping (SLAM) that combines elements from both traditional dense metric SLAM and topological SLAM, using a binary "masking function" to focus attention. This masking function controls which lidar scans are available for loop closures. We provide several masking functions based on approximate topological class detectors. We then examine planning problems in the final chapter and in the appendix. In order to plan with uncertainty around multiple dynamic agents, we describe Monte-Carlo Policy-Tree Decision Making (MCPTDM), a framework for efficiently computing policies in partially-observable, stochastic, continuous problems. MCPTDM composes a sequence of simpler closed-loop policies and uses marginal action costs and particle repetition to improve cost estimates and sample efficiency by reducing variance. Finally, in the appendix we explore Learned Similarity Monte-Carlo Planning (LSMCP), where we seek to enhance the sample efficiency of partially observable Monte Carlo tree search-based planning by taking advantage of similarities in the final outcomes of similar states and actions. We train a multilayer perceptron to learn a similarity function which we then use to enhance value estimates in the planning. Collectively, we show in this thesis that non-parametric methods promote long-term autonomy by reducing error and increasing robustness across multiple domains. 
    more » « less
  2. Abstract: This paper tackles the problem of learning value functions from undirected state-only experience (state transitions without action labels i.e. (s,s’,r) tuples). We first theoretically characterize the applicability of Q-learning in this setting. We show that tabular Q-learning in discrete Markov decision processes (MDPs) learns the same value function under any arbitrary refinement of the action space. This theoretical result motivates the design of Latent Action Q-learning or LAQ, an offline RL method that can learn effective value functions from state-only experience. Latent Action Q-learning (LAQ) learns value functions using Q-learning on discrete latent actions obtained through a latent-variable future prediction model. We show that LAQ can recover value functions that have high correlation with value functions learned using ground truth actions. Value functions learned using LAQ lead to sample efficient acquisition of goal-directed behavior, can be used with domain-specific low-level controllers, and facilitate transfer across embodiments. Our experiments in 5 environments ranging from 2D grid world to 3D visual navigation in realistic environments demonstrate the benefits of LAQ over simpler alternatives, imitation learning oracles, and competing methods. 
    more » « less
  3. The actor-critic RL is widely used in various robotic control tasks. By viewing the actor-critic RL from the perspective of variational inference (VI), the policy network is trained to obtain the approximate posterior of actions given the optimality criteria. However, in practice, the actor-critic RL may yield suboptimal policy estimates due to the amortization gap and insufficient exploration. In this work, inspired by the previous use of Hamiltonian Monte Carlo (HMC) in VI, we propose to integrate the policy network of actor-critic RL with HMC, which is termed as Hamiltonian Policy. As such we propose to evolve actions from the base policy according to HMC, and our proposed method has many benefits. First, HMC can improve the policy distribution to better approximate the posterior and hence reduce the amortization gap. Second, HMC can also guide the exploration more to the regions of action spaces with higher Q values, enhancing the exploration efficiency. Further, instead of directly applying HMC into RL, we propose a new leapfrog operator to simulate the Hamiltonian dynamics. Finally, in safe RL problems, we find that the proposed method can not only improve the achieved return, but also reduce safety constraint violations by discarding potentially unsafe actions. With comprehensive empirical experiments on continuous control baselines, including MuJoCo and PyBullet Roboschool, we show that the proposed approach is a data-efficient and easy-to-implement improvement over previous actor-critic methods. 
    more » « less
  4. Learning from active human involvement enables the human subject to actively intervene and demonstrate to the AI agent during training. The interaction and corrective feedback from human brings safety and AI alignment to the learning process. In this work, we propose a new reward-free active human involvement method called Proxy Value Propagation for policy optimization. Our key insight is that a proxy value function can be designed to express human intents, wherein state- action pairs in the human demonstration are labeled with high values, while those agents’ actions that are intervened receive low values. Through the TD-learning framework, labeled values of demonstrated state-action pairs are further propagated to other unlabeled data generated from agents’ exploration. The proxy value function thus induces a policy that faithfully emulates human behaviors. Human- in-the-loop experiments show the generality and efficiency of our method. With minimal modification to existing reinforcement learning algorithms, our method can learn to solve continuous and discrete control tasks with various human control devices, including the challenging task of driving in Grand Theft Auto V. Demo video and code are available at: https://metadriverse.github.io/pvp. 
    more » « less
  5. Learning from active human involvement enables the human subject to actively intervene and demonstrate to the AI agent during training. The interaction and corrective feedback from human brings safety and AI alignment to the learning process. In this work, we propose a new reward-free active human involvement method called Proxy Value Propagation for policy optimization. Our key insight is that a proxy value function can be designed to express human intents, wherein state- action pairs in the human demonstration are labeled with high values, while those agents’ actions that are intervened receive low values. Through the TD-learning framework, labeled values of demonstrated state-action pairs are further propagated to other unlabeled data generated from agents’ exploration. The proxy value function thus induces a policy that faithfully emulates human behaviors. Human- in-the-loop experiments show the generality and efficiency of our method. With minimal modification to existing reinforcement learning algorithms, our method can learn to solve continuous and discrete control tasks with various human control devices, including the challenging task of driving in Grand Theft Auto V. Demo video and code are available at: https://metadriverse.github.io/pvp. 
    more » « less