skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1955361

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Reinforcement learning algorithms typically rely on the assumption that the environment dynamics and value function can be expressed in terms of a Markovian state representation. However, when state information is only partially observable, how can an agent learn such a state representation, and how can it detect when it has found one? We introduce a metric that can accomplish both objectives, without requiring access to—or knowledge of—an underlying, unobservable state space. Our metric, the λ-discrepancy, is the difference between two distinct temporal difference (TD) value estimates, each computed using TD(λ) with a different value of λ. Since TD(λ=0) makes an implicit Markov assumption and TD(λ=1) does not, a discrepancy between these estimates is a potential indicator of a non-Markovian state representation. Indeed, we prove that the λ-discrepancy is exactly zero for all Markov decision processes and almost always non-zero for a broad class of partially observable environments. We also demonstrate empirically that, once detected, minimizing the λ-discrepancy can help with learning a memory function to mitigate the corresponding partial observability. We then train a reinforcement learning agent that simultaneously constructs two recurrent value networks with different λ parameters and minimizes the difference between them as an auxiliary loss. The approach scales to challenging partially observable domains, where the resulting agent frequently performs significantly better (and never performs worse) than a baseline recurrent agent with only a single value network. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. General-purpose agents require fine-grained controls and rich sensory inputs to perform a wide range of tasks. However, this complexity often leads to intractable decision-making. Traditionally, agents are provided with task-specific action and observation spaces to mitigate this challenge, but this reduces autonomy. Instead, agents must be capable of building state-action spaces at the correct abstraction level from their sensorimotor experiences. We leverage the structure of a given set of temporally-extended actions to learn abstract Markov decision processes (MDPs) that operate at a higher level of temporal and state granularity. We characterize state abstractions necessary to ensure that planning with these skills, by simulating trajectories in the abstract MDP, results in policies with bounded value loss in the original MDP. We evaluate our approach in goal-based navigation environments that require continuous abstract states to plan successfully and show that abstract model learning improves the sample efficiency of planning and learning. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  3. We present an algorithm for skill discovery from expert demonstrations. The algorithm first utilizes Large Language Models (LLMs) to propose an initial segmentation of the trajectories. Following that, a hierarchical variational inference framework incorporates the LLM-generated segmentation information to discover reusable skills by merging trajectory segments. To further control the trade-off between compression and reusability, we introduce a novel auxiliary objective based on the Minimum Description Length principle that helps guide this skill discovery process. Our results demonstrate that agents equipped with our method are able to discover skills that help accelerate learning and outperform baseline skill learning approaches on new long-horizon tasks in BabyAI, a grid world navigation environment, as well as ALFRED, a household simulation environment. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  4. We propose a novel model-based reinforcement learning algorithm—Dynamics Learning and predictive control with Parameterized Actions (DLPA)—for Parameterized Action Markov Decision Processes (PAMDPs). The agent learns a parameterized-action-conditioned dynamics model and plans with a modified Model Predictive Path Integral control. We theoretically quantify the difference between the generated trajectory and the optimal trajectory during planning in terms of the value they achieved through the lens of Lipschitz Continuity. Our empirical results on several standard benchmarks show that our algorithm achieves superior sample efficiency and asymptotic performance than state-of-the-art PAMDP methods. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  5. Real-world robot task planning is intractable in part due to partial observability. A common approach to reducing complexity is introducing additional structure into the decision process, such as mixed-observability, factored states, or temporally-extended actions. We propose the locally observable Markov decision process, a novel formulation that models task-level planning where uncertainty pertains to object-level attributes and where a robot has subroutines for seeking and accurately observing objects. This models sensors that are range-limited and line-of-sight—objects occluded or outside sensor range are unobserved, but the attributes of objects that fall within sensor view can be resolved via repeated observation. Our model results in a three-stage planning process: first, the robot plans using only observed objects; if that fails, it generates a target object that, if observed, could result in a feasible plan; finally, it attempts to locate and observe the target, replanning after each newly observed object. By combining LOMDPs with off-the-shelf Markov planners, we outperform state-of-the-art solvers for both object-oriented POMDP and MDP analogues with the same task specification. We then apply the formulation to successfully solve a task on a mobile robot. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  6. An agent learning an option in hierarchical reinforcement learning must solve three problems: identify the option’s subgoal (termination condition), learn a policy, and learn where that policy will succeed (initiation set). The termination condition is typically identified first, but the option policy and initiation set must be learned simultaneously, which is challenging because the initiation set depends on the option policy, which changes as the agent learns. Consequently, data obtained from option execution becomes invalid over time, leading to an inaccurate initiation set that subsequently harms downstream task performance. We highlight three issues—data non-stationarity, temporal credit assignment, and pessimism—specific to learning initiation sets, and propose to address them using tools from off-policy value estimation and classification. We show that our method learns higher-quality initiation sets faster than existing methods (in MINIGRID and MONTEZUMA’S REVENGE), can automatically discover promising grasps for robot manipulation (in ROBOSUITE), and improves the performance of a state-of-the-art option discovery method in a challenging maze navigation task in MuJoCo. 
    more » « less
  7. It is imperative that robots can understand natural language commands issued by humans. Such commands typically contain verbs that signify what action should be performed on a given object and that are applicable to many objects. We propose a method for generalizing manipulation skills to novel objects using verbs. Our method learns a probabilistic classifier that determines whether a given object trajectory can be described by a specific verb. We show that this classifier accurately generalizes to novel object categories with an average accuracy of 76.69% across 13 object categories and 14 verbs. We then perform policy search over the object kinematics to find an object trajectory that maximizes classifier prediction for a given verb. Our method allows a robot to generate a trajectory for a novel object based on a verb, which can then be used as input to a motion planner. We show that our model can generate trajectories that are usable for executing five verb commands applied to novel instances of two different object categories on a real robot. 
    more » « less
  8. We introduce RLang, a domain-specific language (DSL) for communicating domain knowledge to an RL agent. Unlike existing RL DSLs that ground to single elements of a decision-making formalism (e.g., the reward function or policy), RLang can specify information about every element of a Markov decision process. We define precise syntax and grounding semantics for RLang, and provide a parser that grounds RLang programs to an algorithm-agnostic partial world model and policy that can be exploited by an RL agent. We provide a series of example RLang programs demonstrating how different RL methods can exploit the resulting knowledge, encompassing model-free and model-based tabular algorithms, policy gradient and value-based methods, hierarchical approaches, and deep methods. 
    more » « less
  9. We propose a novel parameterized skill-learning algorithm that aims to learn transferable parameterized skills and synthesize them into a new action space that supports efficient learning in long-horizon tasks. We propose to leverage off-policy Meta-RL combined with a trajectory-centric smoothness term to learn a set of parameterized skills. Our agent can use these learned skills to construct a three-level hierarchical framework that models a Temporally-extended Parameterized Action Markov Decision Process. We empirically demonstrate that the proposed algorithms enable an agent to solve a set of difficult long-horizon (obstacle-course and robot manipulation) tasks. 
    more » « less
  10. We propose a new method for count-based exploration in high-dimensional state spaces. Unlike previous work which relies on density models, we show that counts can be derived by averaging samples from the Rademacher distribution (or coin flips). This insight is used to set up a simple supervised learning objective which, when optimized, yields a state’s visitation count. We show that our method is significantly more effective at deducing ground-truth visitation counts than previous work; when used as an exploration bonus for a model-free reinforcement learning algorithm, it outperforms existing approaches on most of 9 challenging exploration tasks, including the Atari game MONTEZUMA’S REVENGE. 
    more » « less