We propose a model-based lifelong reinforcement-learning approach that estimates a hierarchical Bayesian posterior distilling the common structure shared across different tasks. The learned posterior combined with a sample-based Bayesian exploration procedure increases the sample efficiency of learning across a family of related tasks. We first derive an analysis of the relationship between the sample complexity and the initialization quality of the posterior in the finite MDP setting. We next scale the approach to continuous-state domains by introducing a Variational Bayesian Lifelong Reinforcement Learning algorithm that can be combined with recent model-based deep RL methods, and that exhibits backward transfer. Experimental results on several challenging domains show that our algorithms achieve both better forward and backward transfer performance than state-of-the-art lifelong RL methods
more »
« less
Performance Bounds for Model and Policy Transfer in Hidden-parameter MDPs
In the Hidden-Parameter MDP (HiP-MDP) framework, a family of reinforcement learning tasks is generated by varying hidden parameters specifying the dynamics and reward function for each individual task. The HiP-MDP is a natural model for families of tasks in which meta- and lifelong-reinforcement learning approaches can succeed. Given a learned context encoder that infers the hidden parameters from previous experience, most existing algorithms fall into two categories: model transfer and policy transfer, depending on which function the hidden parameters are used to parameterize. We characterize the robustness of model and policy transfer algorithms with respect to hidden parameter estimation error. We first show that the value function of HiP-MDPs is Lipschitz continuous under certain conditions. We then derive regret bounds for both settings through the lens of Lipschitz continuity. Finally, we empirically corroborate our theoretical analysis by varying the hyper-parameters governing the Lipschitz constants of two continuous control problems; the resulting performance is consistent with our theoretical results.
more »
« less
- PAR ID:
- 10404722
- Date Published:
- Journal Name:
- Proceedings of the Eleventh International Conference on Learning Representations
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Policy distillation, which transfers a teacher policy to a student policy has achieved great success in challenging tasks of deep reinforcement learning. This teacher-student framework requires a well-trained teacher model which is computationally expensive. Moreover, the performance of the student model could be limited by the teacher model if the teacher model is not optimal. In the light of collaborative learning, we study the feasibility of involving joint intellectual efforts from diverse perspectives of student models. In this work, we introduce dual policy distillation (DPD), a student-student framework in which two learners operate on the same environment to explore different perspectives of the environment and extract knowledge from each other to enhance their learning. The key challenge in developing this dual learning framework is to identify the beneficial knowledge from the peer learner for contemporary learning-based reinforcement learning algorithms, since it is unclear whether the knowledge distilled from an imperfect and noisy peer learner would be helpful. To address the challenge, we theoretically justify that distilling knowledge from a peer learner will lead to policy improvement and propose a disadvantageous distillation strategy based on the theoretical results. The conducted experiments on several continuous control tasks show that the proposed framework achieves superior performance with a learning-based agent and function approximation without the use of expensive teacher models.more » « less
-
This paper presents a framework to learn the reward function underlying high-level sequential tasks from demonstrations. The purpose of reward learning, in the context of learning from demonstration (LfD), is to generate policies that mimic the demonstrator’s policies, thereby enabling imitation learning. We focus on a human-robot interaction(HRI) domain where the goal is to learn and model structured interactions between a human and a robot. Such interactions can be modeled as a partially observable Markov decision process (POMDP) where the partial observability is caused by uncertainties associated with the ways humans respond to different stimuli. The key challenge in finding a good policy in such a POMDP is determining the reward function that was observed by the demonstrator. Existing inverse reinforcement learning(IRL) methods for POMDPs are computationally very expensive and the problem is not well understood. In comparison, IRL algorithms for Markov decision process (MDP) are well defined and computationally efficient. We propose an approach of reward function learning for high-level sequential tasks from human demonstrations where the core idea is to reduce the underlying POMDP to an MDP and apply any efficient MDP-IRL algorithm. Our extensive experiments suggest that the reward function learned this way generates POMDP policies that mimic the policies of the demonstrator well.more » « less
-
We propose Adversarially Trained Actor Critic (ATAC), a new model-free algorithm for offline reinforcement learning (RL) under insufficient data coverage, based on the concept of relative pessimism. ATAC is designed as a two-player Stackelberg game: A policy actor competes against an adversarially trained value critic, who finds data-consistent scenarios where the actor is inferior to the data-collection behavior policy. We prove that, when the actor attains no regret in the two-player game, running ATAC produces a policy that provably 1) outperforms the behavior policy over a wide range of hyperparameters that control the degree of pessimism, and 2) competes with the best policy covered by data with appropriately chosen hyperparameters. Compared with existing works, notably our framework offers both theoretical guarantees for general function approximation and a deep RL implementation scalable to complex environments and large datasets. In the D4RL benchmark, ATAC consistently outperforms state-of-the-art offline RL algorithms on a range of continuous control tasks.more » « less
-
Dasgupta, Sanjoy; Mandt, Stephan; Li, Yingzhen (Ed.)Average reward reinforcement learning (RL) provides a suitable framework for capturing the objective (i.e. long-run average reward) for continuing tasks, where there is often no natural way to identify a discount factor. However, existing average reward RL algorithms with sample complexity guarantees are not feasible, as they take as input the (unknown) mixing time of the Markov decision process (MDP). In this paper, we make initial progress towards addressing this open problem. We design a feasible average-reward $$Q$$-learning framework that requires no knowledge of any problem parameter as input. Our framework is based on discounted $$Q$$-learning, while we dynamically adapt the discount factor (and hence the effective horizon) to progressively approximate the average reward. In the synchronous setting, we solve three tasks: (i) learn a policy that is $$\epsilon$$-close to optimal, (ii) estimate optimal average reward with $$\epsilon$$-accuracy, and (iii) estimate the bias function (similar to $$Q$$-function in discounted case) with $$\epsilon$$-accuracy. We show that with carefully designed adaptation schemes, (i) can be achieved with $$\tilde{O}(\frac{SA t_{\mathrm{mix}}^{8}}{\epsilon^{8}})$$ samples, (ii) with $$\tilde{O}(\frac{SA t_{\mathrm{mix}}^5}{\epsilon^5})$$ samples, and (iii) with $$\tilde{O}(\frac{SA B}{\epsilon^9})$$ samples, where $$t_\mathrm{mix}$$ is the mixing time, and $B > 0$ is an MDP-dependent constant. To our knowledge, we provide the first finite-sample guarantees that are polynomial in $$S, A, t_{\mathrm{mix}}, \epsilon$$ for a feasible variant of $$Q$$-learning. That said, the sample complexity bounds have tremendous room for improvement, which we leave for the community’s best minds. Preliminary simulations verify that our framework is effective without prior knowledge of parameters as input.more » « less