Abstract In a recent study by Wang et al. that introduced a dynamical efficiency to the intensification potential of a tropical cyclone (TC) system, a simplified energetically based dynamical system (EBDS) model was shown to be able to capture the intensity dependence of TC potential intensification rate (PIR) in both idealized numerical simulations and observations. Although the EBDS model can capture the intensity dependence of TC intensification as in observations, a detailed evaluation has not yet been done. This study provides an evaluation of the EBDS model in reproducing the intensity-dependent feature of the observed TC PIR based on the best track data for TCs over the North Atlantic and central, eastern, and western North Pacific during 1982–2019. Results show that the theoretical PIR estimated by the EBDS model can capture basic features of the observed PIR reasonably well. The TC PIR in the best track data increases with increasing relative TC intensity [intensity normalized by its corresponding maximum potential intensity (MPI)] and reaches a maximum at an intermediate relative intensity around 0.6, and then decreases with increasing relative intensity to zero as the TC approaches its MPI, as in idealized numerical simulations. Results also show that the PIR for a given relative intensity increases with the increasing MPI and thus increasing sea surface temperature, which is also consistent with the theoretical PIR implied by the EBDS model. In addition, future directions to include environmental effects and make the EBDS model applicable to predict intensity change of real TCs are also discussed. 
                        more » 
                        « less   
                    
                            
                            Contribution of Dissipative Heating to the Intensity Dependence of Tropical Cyclone Intensification
                        
                    
    
            Abstract Previous studies have demonstrated the contribution of dissipative heating (DH) to the maximum potential intensity (MPI) of tropical cyclones (TCs). Since DH is a function of near-surface wind speed and thus TC intensity, a natural question arises as to whether DH contributes to the intensity dependence of TC potential intensification rate (PIR). To address this issue, an attempt has been made to include DH in a recently developed time-dependent theory of TC intensification. With this addition, the theory predicts a shift of the maximum PIR toward the higher intensity side, which is consistent with the intensity dependence of TC intensification rate in observed strong TCs. Since the theory without DH predicts a dependence of TC PIR on the square of the MPI, the inclusion of DH results in an even higher PIR for strong TCs. Considering the projected increase in TC MPI under global warming, the theoretical work implies that as the climate continues to warm, TCs may intensify more rapidly. This may not only make the TC intensity forecasting more difficult, but also may increase the threats of TCs to the coastal populations if TCs intensify more rapidly just before they make landfall. Significance Statement Previous studies have demonstrated that dissipative heating (DH) can significantly contribute to the maximum potential intensity (MPI) that a tropical cyclone (TC) can achieve given favorable environmental thermodynamic conditions of the atmosphere and the underlying ocean. Here we show that because DH is a function of near-surface wind speed and thus TC intensity, DH can also significantly contribute to the intensity dependence of TC potential intensification rate (PIR). This has been demonstrated by introducing DH into a recently developed time-dependent theory of TC intensification. With DH the theory predicts a shift of the maximum PIR toward the higher intensity side as observed in strong TCs. Therefore, as the climate continues to warm, TCs may intensify more rapidly and become stronger. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1834300
- PAR ID:
- 10404749
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 79
- Issue:
- 8
- ISSN:
- 0022-4928
- Page Range / eLocation ID:
- 2169 to 2180
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Several key issues in the simple time-dependent theories of tropical cyclone (TC) intensification developed in recent years remain, including the lack of a closure for the pressure dependence of saturation enthalpy at sea surface temperature (SST) under the eyewall and the definition of environmental conditions, such as the boundary layer enthalpy in TC environment and the TC outflow-layer temperature. In this study, some refinements to the most recent time-dependent theory of TC intensification have been accomplished to resolve those issues. The first is the construction of a functional relationship between the surface pressure under the eyewall and the TC intensity, which is derived using the cyclostrophic wind balance and calibrated using full-physics axisymmetric model simulations. The second is the definition of TC environment that explicitly includes the air–sea temperature difference. The third is the TC outflow-layer temperature parameterized as a linear function of SST based on global reanalysis data. With these refinements, the updated time-dependent theory becomes self-contained and can give both the intensity-dependent TC intensification rate (IR) and the maximum potential intensity (MPI) under given environmental thermodynamic conditions. It is shown that the pressure dependence of saturation enthalpy at SST can lead to an increase in the TC MPI and IR by about half of that induced by dissipative heating due to surface friction. Results also show that both MPI and IR increase with increasing SST, surface enthalpy exchange coefficient, environmental air–sea temperature difference, and decreasing environmental boundary layer relative humidity, but the maximum IR is insensitive to surface drag coefficient. Significance StatementA new advancement in the recent decade is the development of simple time-dependent theories of tropical cyclone (TC) intensification, which can provide quantitative understanding of TC intensity change. However, several key issues in these simple time-dependent theories remain, including the lack of a closure for the pressure dependence of saturation enthalpy at sea surface temperature under the eyewall and the definition of environmental conditions. These are resolved in this study with several refinements, which make the most recent time-dependent theory of TC intensification self-contained and practical.more » « less
- 
            Abstract The radius of maximum wind (RMW) has been found to contract rapidly well preceding rapid intensification in tropical cyclones (TCs) in recent literature but the understanding of the involved dynamics is incomplete. In this study, this phenomenon is revisited based on ensemble axisymmetric numerical simulations. Consistent with previous studies, because the absolute angular momentum (AAM) is not conserved following the RMW, the phenomenon can not be understood based on the AAM-based dynamics. Both budgets of tangential wind and the rate of change in the RMW are shown to provide dynamical insights into the simulated relationship between the rapid intensification and rapid RMW contraction. During the rapid RMW contraction stage, due to the weak TC intensity and large RMW, the moderate negative radial gradient of radial vorticity flux and small curvature of the radial distribution of tangential wind near the RMW favor rapid RMW contraction but weak diabatic heating far inside the RMW leads to weak low-level inflow and small radial absolute vorticity flux near the RMW and thus a relatively small intensification rate. As RMW contraction continues and TC intensity increases, diabatic heating inside the RMW and radial inflow near the RMW increase, leading to a substantial increase in radial absolute vorticity flux near the RMW and thus the rapid TC intensification. However, the RMW contraction rate decreases rapidly due to the rapid increase in the curvature of the radial distribution of tangential wind near the RMW as the TC intensifies rapidly and RMW decreases.more » « less
- 
            Abstract In this study, the boundary layer tangential wind budget equation following the radius of maximum wind, together with an assumed thermodynamical quasi-equilibrium boundary layer, is used to derive a new equation for tropical cyclone (TC) intensification rate (IR). A TC is assumed to be axisymmetric in thermal-wind balance, with eyewall convection coming into moist slantwise neutrality in the free atmosphere above the boundary layer as the storm intensifies, as found recently based on idealized numerical simulations. An ad hoc parameter is introduced to measure the degree of congruence of the absolute angular momentum and the entropy surfaces. The new IR equation is evaluated using results from idealized ensemble full-physics axisymmetric numerical simulations. Results show that the new IR equation can reproduce the time evolution of the simulated TC intensity. The new IR equation indicates a strong dependence of IR on both TC intensity and the corresponding maximum potential intensity (MPI). A new finding is the dependence of TC IR on the square of the MPI in terms of the near-surface wind speed for any given relative intensity. Results from some numerical integrations of the new IR equation also suggest the finite-amplitude nature of TC genesis. In addition, the new IR theory is also supported by some preliminary results based on best-track TC data over the North Atlantic Ocean and eastern and western North Pacific Ocean. As compared with the available time-dependent theories of TC intensification, the new IR equation can provide a realistic intensity-dependent IR during weak intensity stage as seen in observations.more » « less
- 
            Abstract Hurricane Patricia (2015) formed over the eastern North Pacific and is the most intense tropical cyclone (TC) on record with a maximum sustained wind speed of 95 m s−1, which presented a great forecasting challenge due to its unprecedented rapid intensification, record-breaking lifetime maximum intensity, and subsequent rapid weakening. The intensity and structure changes in Patricia were successfully simulated in a control experiment using a two-way interactive, quadruply nested version of the Weather Research and Forecasting Model with both initial and lateral boundary conditions from the Global Forecast System Final Analysis data. The successful simulation resulted from the inclusion of dissipative heating, realistic horizontal mixing length, and sea-spray-mediated heat flux. The relative contributions of these processes were assessed based on a series of ensemble-based sensitivity experiments and energetic diagnostics. Results show that dissipative heating and reduced horizontal mixing length had the most significant impacts on the intensification rate of Patricia after it reached an intensity of category 3, contributing 25.8% and 28.9% to the intensification rate and 11.7% and 14.1% to the lifetime maximum intensity, respectively. The contribution by spray-mediated heat flux increased significantly with wind speed, contributing up to 20.1% to the intensification rate and 20% to the surface energy flux under the eyewall at the wind speed of 90 m s−1. An alternative surface drag coefficient scheme and a constant surface roughness for moisture and heat were also tested and discussed via sensitivity experiments. The study provides insights into the physical processes key to successful simulations and forecasts of extremely strong TCs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    