skip to main content


This content will become publicly available on May 15, 2024

Title: Bayesian causal inference: a critical review
This paper provides a critical review of the Bayesian perspective of causal inference based on the potential outcomes framework. We review the causal estimands, assignment mechanism, the general structure of Bayesian inference of causal effects and sensitivity analysis. We highlight issues that are unique to Bayesian causal inference, including the role of the propensity score, the definition of identifiability, the choice of priors in both low- and high-dimensional regimes. We point out the central role of covariate overlap and more generally the design stage in Bayesian causal inference. We extend the discussion to two complex assignment mechanisms: instrumental variable and time-varying treatments. We identify the strengths and weaknesses of the Bayesian approach to causal inference. Throughout, we illustrate the key concepts via examples. This article is part of the theme issue ‘Bayesian inference: challenges, perspectives, and prospects’.  more » « less
Award ID(s):
1945136
NSF-PAR ID:
10404779
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
381
Issue:
2247
ISSN:
1364-503X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Education research has experienced a methodological renaissance over the past two decades, with a new focus on large-scale randomized experiments. This wave of experiments has made education research an even more exciting area for statisticians, unearthing many lessons and challenges in experimental design, causal inference, and statistics more broadly. Importantly, educational research and practice almost always occur in a multilevel setting, which makes the statistics relevant to other fields with this structure, including social policy, health services research, and clinical trials in medicine. In this article we first briefly review the history that led to this new era in education research and describe the design features that dominate the modern large-scale educational experiments. We then highlight some of the key statistical challenges in this area, including endogeneity of design, heterogeneity of treatment effects, noncompliance with treatment assignment, mediation, generalizability, and spillover. Though a secondary focus, we also touch on promising trial designs that answer more nuanced questions, such as the SMART design for studying dynamic treatment regimes and factorial designs for optimizing the components of an existing treatment. 
    more » « less
  2. Identifying cause-effect relations among variables is a key step in the decision-making process. Whereas causal inference requires randomized experiments, researchers and policy makers are increasingly using observational studies to test causal hypotheses due to the wide availability of data and the infeasibility of experiments. The matching method is the most used technique to make causal inference from observational data. However, the pair assignment process in one-to-one matching creates uncertainty in the inference because of different choices made by the experimenter. Recently, discrete optimization models have been proposed to tackle such uncertainty; however, they produce 0-1 nonlinear problems and lack scalability. In this work, we investigate this emerging data science problem and develop a unique computational framework to solve the robust causal inference test instances from observational data with continuous outcomes. In the proposed framework, we first reformulate the nonlinear binary optimization problems as feasibility problems. By leveraging the structure of the feasibility formulation, we develop greedy schemes that are efficient in solving robust test problems. In many cases, the proposed algorithms achieve a globally optimal solution. We perform experiments on real-world data sets to demonstrate the effectiveness of the proposed algorithms and compare our results with the state-of-the-art solver. Our experiments show that the proposed algorithms significantly outperform the exact method in terms of computation time while achieving the same conclusion for causal tests. Both numerical experiments and complexity analysis demonstrate that the proposed algorithms ensure the scalability required for harnessing the power of big data in the decision-making process. Finally, the proposed framework not only facilitates robust decision making through big-data causal inference, but it can also be utilized in developing efficient algorithms for other nonlinear optimization problems such as quadratic assignment problems. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the Division of Civil, Mechanical and Manufacturing Innovation of the National Science Foundation [Grant 2047094]. Supplemental Material: The online supplements are available at https://doi.org/10.1287/ijoc.2022.1226 . 
    more » « less
  3. Abstract

    Causal mediation analysis aims to examine the role of a mediator or a group of mediators that lie in the pathway between an exposure and an outcome. Recent biomedical studies often involve a large number of potential mediators based on high‐throughput technologies. Most of the current analytic methods focus on settings with one or a moderate number of potential mediators. With the expanding growth of ‐omics data, joint analysis of molecular‐level genomics data with epidemiological data through mediation analysis is becoming more common. However, such joint analysis requires methods that can simultaneously accommodate high‐dimensional mediators and that are currently lacking. To address this problem, we develop a Bayesian inference method using continuous shrinkage priors to extend previous causal mediation analysis techniques to a high‐dimensional setting. Simulations demonstrate that our method improves the power of global mediation analysis compared to simpler alternatives and has decent performance to identify true nonnull contributions to the mediation effects of the pathway. The Bayesian method also helps us to understand the structure of the composite null cases for inactive mediators in the pathway. We applied our method to Multi‐Ethnic Study of Atherosclerosis and identified DNA methylation regions that may actively mediate the effect of socioeconomic status on cardiometabolic outcomes.

     
    more » « less
  4. Abstract Propensity score weighting is a tool for causal inference to adjust for measured confounders in observational studies. In practice, data often present complex structures, such as clustering, which make propensity score modeling and estimation challenging. In addition, for clustered data, there may be unmeasured cluster-level covariates that are related to both the treatment assignment and outcome. When such unmeasured cluster-specific confounders exist and are omitted in the propensity score model, the subsequent propensity score adjustment may be biased. In this article, we propose a calibration technique for propensity score estimation under the latent ignorable treatment assignment mechanism, i. e., the treatment-outcome relationship is unconfounded given the observed covariates and the latent cluster-specific confounders. We impose novel balance constraints which imply exact balance of the observed confounders and the unobserved cluster-level confounders between the treatment groups. We show that the proposed calibrated propensity score weighting estimator is doubly robust in that it is consistent for the average treatment effect if either the propensity score model is correctly specified or the outcome follows a linear mixed effects model. Moreover, the proposed weighting method can be combined with sampling weights for an integrated solution to handle confounding and sampling designs for causal inference with clustered survey data. In simulation studies, we show that the proposed estimator is superior to other competitors. We estimate the effect of School Body Mass Index Screening on prevalence of overweight and obesity for elementary schools in Pennsylvania. 
    more » « less
  5. Abstract

    Causal inference practitioners have increasingly adopted machine learning techniques with the aim of producing principled uncertainty quantification for causal effects while minimizing the risk of model misspecification. Bayesian nonparametric approaches have attracted attention as well, both for their flexibility and their promise of providing natural uncertainty quantification. Priors on high‐dimensional or nonparametric spaces, however, can often unintentionally encode prior information that is at odds with substantive knowledge in causal inference—specifically, the regularization required for high‐dimensional Bayesian models to work can indirectly imply that the magnitude of the confounding is negligible. In this paper, we explain this problem and provide tools for (i) verifying that the prior distribution does not encode an inductive bias away from confounded models and (ii) verifying that the posterior distribution contains sufficient information to overcome this issue if it exists. We provide a proof‐of‐concept on simulated data from a high‐dimensional probit‐ridge regression model, and illustrate on a Bayesian nonparametric decision tree ensemble applied to a large medical expenditure survey.

     
    more » « less