Freshwater salinity varies in natural systems and plays a role in species distribution. Anthropogenic alterations to freshwater salinity regimes include sea level rise and subsequent intrusion of saline waters to inland habitats. While mayflies are generalized to be sensitive to increasing salinity, we still know remarkably little about the physiological processes (and their plasticity) that determine the performance of species in a changing world. Here, we explored life-history outcomes and physiological plasticity in a population of Callibaetis floridanus (Ephemeroptera: Baetidae) from a coastal pond that routinely experiences saltwater intrusion. We reared naiads from egg hatch to adulthood across a gradient of increasing salinities (113, 5,020, 9,921 μS/cm). Radiotracer flux studies ( 22 Na, 35 SO 4 , and 45 Ca) were conducted in naiads reared at each salinity, revealing a positive association between ionic concentration and uptake rates. However, the influence of rearing history on ionic influx rates was apparent when naiads were transferred from their respective rearing water to the other experimental conditions. For example, we observed that naiads reared in the low salinity treatment (113 μS/cm) had 10.8-fold higher Na uptake rates than naiads reared at 9,921 μS/cm and transferred to 113 μS/cm. Additionally, naiads acclimated to the higher salinity water exhibited reduced uptake in ion-rich water relative to those reared in more dilute conditions (e.g., in 9,921 μS/cm water, 113 and 5,020 μS/cm acclimated naiads had 1.5- and 1.1-fold higher Na uptake rates than 9,921 μS/cm acclimated naiads, respectively). We found no significant changes in survival (80 ± 4.4%, mean ± s.e.m.) or naiad development time (24 ± 0.3 days, mean ± s.e.m.) across these treatments but did observe a 27% decrease in subimago female body weight in the most dilute condition. This reduction in female weight was associated with higher oxygen consumption rates in naiads relative to the other rearing conditions. Collectively, these data suggests that saline adapted C. floridanus may be more energetically challenged in dilute conditions, which differs from previous observations in other mayfly species.
more »
« less
The acclimatory response of the mayfly Neocloeon triangulifer to dilute conditions is linked to the plasticity of sodium transport
Relative to a growing body of knowledge about the negative consequences of freshwater salinization, little is known about how aquatic insects respond to progressively ion-poor conditions. Here, we examined life-history and physiological acclimation in Neocloeon triangulifer by rearing nymphs from 1-day post-egg hatch to adulthood across a gradient of decreasing Na concentrations (15, 8, 4, 2 and 1 mg l −1 Na). We found no significant changes in survival, growth, development time and whole-body Na content across these treatments. Radiotracer data revealed that nymphs acclimated to their dilute exposures by increasing their rates of Na uptake and were able to maintain a relatively narrow range of uptake rates (±s.e.m.) of 38.5 ± 4.2 µg Na g −1 h −1 across all treatments. By contrast, the Na uptake rates observed in naive nymphs were much more concentration dependent. This acclimatory response is partially explained by differences in ionocyte counts on the gills of nymphs reared under different salinities. Acclimated nymphs were surprisingly less retentive of their sodium composition when subjected to deionized water challenge. By contrasting our findings with a previous N. triangulifer salinity acclimation study, we show a physiological affinity for dilute conditions in this emerging mayfly model.
more »
« less
- Award ID(s):
- 1754884
- PAR ID:
- 10404808
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 289
- Issue:
- 1979
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synopsis Homeothermic endotherms defend their body temperature in cold environments using a number of behavioral and physiological mechanisms. Maintaining a stable body temperature primarily requires heat production through shivering or non-shivering thermogenesis (NST). Although the use of NST is well established in mammalian systems, the mechanisms and extent to which NST is used in birds are poorly understood. In mammals, one well-characterized mechanism of NST is through uncoupling of Ca2+ transport from ATP hydrolysis by sarco/endoplasmic reticulum ATPase (SERCA) in the skeletal muscle, which generates heat and may contribute to Ca2+ signaling for fatigue resistance and mitochondrial biogenesis. Two small proteins—sarcolipin (SLN) and phospholamban (PLN)—are known to regulate SERCA in mammals, but recent work shows inconsistent responses of SLN to cold acclimation in birds. In this study, we measured SERCA uncoupling in the pectoralis flight muscle of control (18°C) and cold-acclimated (−8°C) dark-eyed juncos (Junco hyemalis) that exhibited suppressed SLN transcription in the cold. We measured SERCA activity and Ca2+ uptake rates for the first time in cold-acclimated birds and found greater SERCA uncoupling in the muscle of juncos in the cold. However, SERCA uncoupling was not related to SLN or PLN transcription or measures of mitochondrial biogenesis. Nonetheless, SERCA uncoupling reduced an individual’s risk of hypothermia in the cold. Therefore, while SERCA uncoupling in the cold could be indicative of NST, it does not appear to be mediated by known regulatory proteins in these birds. These results prompt interesting questions about the significance of SLN and PLN in birds and the role of SERCA uncoupling in response to environmental conditions.more » « less
-
na (Ed.)ABSTRACT Oxygen availability is central to the energetic budget of aquatic animals and may vary naturally and/or in response to anthropogenic activities. Yet, we know little about how oxygen availability is linked to fundamental processes such as ion transport in aquatic insects. We hypothesized and observed that ion (22Na and 35SO4) uptake would be significantly decreased at O2 partial pressures below the mean critical level (Pcrit, 5.4 kPa) where metabolic rate (ṀO2) is compromised and ATP production is limited. However, we were surprised to observe marked reductions in ion uptake at oxygen partial pressures well above Pcrit, where ṀO2 was stable. For example, SO4 uptake decreased by 51% at 11.7 kPa and 82% at Pcrit (5.4 kPa) while Na uptake decreased by 19% at 11.7 kPa and 60% at Pcrit. Nymphs held for longer time periods at reduced PO2 exhibited stronger reductions in ion uptake rates. Fluids from whole-body homogenates exhibited a 29% decrease in osmolality in the most hypoxic condition. The differential expression of atypical guanylate cyclase (gcy-88e) in response to changing PO2 conditions provides evidence for its potential role as an oxygen sensor. Several ion transport genes (e.g. chloride channel and sodium-potassium ATPase) and hypoxia-associated genes (e.g. ldh and egl-9) were also impacted by decreased oxygen availability. Together, the results of our work suggest that N. triangulifer can sense decreased oxygen availability and perhaps conserves energy accordingly, even when ṀO2 is not impacted.more » « less
-
Abstract Understanding how altered temperature regimes affect harmful cyanobacterial bloom formation is essential for managing aquatic ecosystems amidst ongoing climate warming. This is difficult because algal performance can depend on both current and past environments, as plastic physiological changes (acclimation) may lag behind environmental change. Here, we investigate how temperature variation on sub‐weekly timescales affects population growth and toxin production given acclimation. We studied four ecologically important freshwater cyanobacterial strains under low‐ and high‐nutrient conditions, measuring population growth rate after acclimation and new exposure to a range of temperatures. Cold‐acclimated populations (15.7°C) outperformed fully acclimated populations (held in constant conditions) across 65% of thermal environments, while hot‐acclimated populations (35.7–42.6°C) underperformed across 75% of thermal environments. Over a 5‐day period, cold‐acclimatedMicrocystis aeruginosaproduced ~2.5‐fold more microcystin than hot‐acclimated populations experiencing the same temperature perturbation. Our results suggest that thermal variation and physiology interact in underappreciated ways to influence cyanobacterial growth, toxin production, and likely bloom formation.more » « less
-
All freshwater organisms are challenged to control their internal balance of water and ions in strongly hypotonic environments. We compared the influence of external salinity on the oxygen consumption rates (M O2) of three species of freshwater insects, one snail and two crustaceans. Consistent with available literature, we found a clear decrease in M O2 with increasing salinity in the snail Elimia sp. and crustaceans Hyalella azteca and Gammarus pulex (r5=−0.90, P=0.03). However, we show here for the first time that metabolic rate was unchanged by salinity in the aquatic insects, whereas ion transport rates were positively correlated with higher salinities. In contrast, when we examined the ionic influx rates in the freshwater snail and crustaceans, we found that Ca uptake rates were highest under the most dilute conditions, while Na uptake rates increased with salinity. In G. pulex exposed to a serially diluted ion matrix, Ca uptake rates were positively associated with M O2 (r5=−0.93, P=0.02). This positive association between Ca uptake rate and M O2 was also observed when conductivity was held constant but Ca concentration was manipulated (1.7–17.3 mg Ca l−1) (r5=0.94, P=0.05). This finding potentially implicates the cost of calcium uptake as a driver of increased metabolic rate under dilute conditions in organisms with calcified exoskeletons and suggests major phyletic differences in osmoregulatory physiology. Freshwater insects may be energetically challenged by higher salinities, while lower salinities may be more challenging for other freshwater taxa.more » « less
An official website of the United States government

