- PAR ID:
- 10404901
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Editor(s):
- Zmuidzinas, Jonas; Gao, Jian-Rong
- Date Published:
- Journal Name:
- Proceedings of the SPIE
- Volume:
- 12190
- Issue:
- E
- Page Range / eLocation ID:
- 1XC
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The Beamforming Elevated Array for COsmic Neutrinos (BEACON) is a concept for a neutrino telescope designed to measure tau lepton air showers generated from tau neutrino interactions near the horizon. This detection mechanism provides a pure measurement of the tau flavor of cosmogenic neutrinos, which could be used to set limits on the observed flavor ratios for cosmogenic neutrinos in a manner complimentary to the all-flavor neutrino flux measurements made by other experiments. BEACON is expected to also be capable of detecting cosmic rays through RF-only triggers. BEACON aims to achieve this sensitivity by using mountaintop radio arrays of dual-polarized antennas operating in the 30-80 MHz band which utilize directional interferometric triggering. BEACON stations are designed to efficiently use a small amount of instrumentation, allowing for deployment in a variety of high-elevation sites. The interferometric trigger provides a natural tool for directional-based anthropogenic RFI rejection at the trigger level, broadening the list for potential station sites. The BEACON prototype has seen continuous design advancements towards improving the mechanical durability and scientific capabilities since its initial deployment at White Mountain Research Station in 2018. Here we present the current prototype’s sensitivity to RF-triggered cosmic-ray background signals. We also present the next generation prototype, which includes scintillating cosmic ray detectors, improved antennas, and refined calibration techniques.more » « less
-
We present an estimate of the Atacama Cosmology Telescope (ACT) detector polarization angle systematic uncertainty from optics perturbation analysis using polarization-sensitive ray tracing in CODE V optical design software. Uncertainties in polarization angle calibration in CMB measurements can limit constraints on cosmic birefringence and other cosmological parameters sensitive to polarization leakage. Our framework estimates the angle calibration systematic uncertainties from possible displacements in lens positions and orientations, and anti-reflection coating (ARC) thicknesses and refractive indices. With millimeter displacements in lens positions and percent-level perturbations in ARC thicknesses and indices from design, we find the total systematic uncertainty for three ACT detector arrays operating between 90 and 220 GHz to be at the 10th of degree scale. Reduced lens position and orientation uncertainties from physical measurements could lead to a reduction in the systematic uncertainty estimated with the framework presented here. This optical modeling may inform polarization angle systematic uncertainties for current and future microwave polarimeters, such as the CCAT Observatory, Simons Observatory, and CMB-S4.
-
Abstract Event Horizon Telescope (EHT) observations have revealed a bright ring of emission around the supermassive black hole at the center of the M87 galaxy. EHT images in linear polarization have further identified a coherent spiral pattern around the black hole, produced from ordered magnetic fields threading the emitting plasma. Here we present the first analysis of circular polarization using EHT data, acquired in 2017, which can potentially provide additional insights into the magnetic fields and plasma composition near the black hole. Interferometric closure quantities provide convincing evidence for the presence of circularly polarized emission on event-horizon scales. We produce images of the circular polarization using both traditional and newly developed methods. All methods find a moderate level of resolved circular polarization across the image (〈∣
v ∣〉 < 3.7%), consistent with the low image-integrated circular polarization fraction measured by the Atacama Large Millimeter/submillimeter Array (∣v int∣ < 1%). Despite this broad agreement, the methods show substantial variation in the morphology of the circularly polarized emission, indicating that our conclusions are strongly dependent on the imaging assumptions because of the limited baseline coverage, uncertain telescope gain calibration, and weakly polarized signal. We include this upper limit in an updated comparison to general relativistic magnetohydrodynamic simulation models. This analysis reinforces the previously reported preference for magnetically arrested accretion flow models. We find that most simulations naturally produce a low level of circular polarization consistent with our upper limit and that Faraday conversion is likely the dominant production mechanism for circular polarization at 230 GHz in M87*. -
Abstract We present the first linear polarization measurements from the 2015 long-duration balloon flight of
Spider , which is an experiment that is designed to map the polarization of the cosmic microwave background (CMB) on degree angular scales. The results from these measurements include maps and angular power spectra from observations of 4.8% of the sky at 95 and 150 GHz, along with the results of internal consistency tests on these data. While the polarized CMB anisotropy from primordial density perturbations is the dominant signal in this region of sky, Galactic dust emission is also detected with high significance. Galactic synchrotron emission is found to be negligible in theSpider bands. We employ two independent foreground-removal techniques to explore the sensitivity of the cosmological result to the assumptions made by each. The primary method uses a dust template derived fromPlanck data to subtract the Galactic dust signal. A second approach, which constitutes a joint analysis ofSpider andPlanck data in the harmonic domain, assumes a modified-blackbody model for the spectral energy distribution of the dust with no constraint on its spatial morphology. Using a likelihood that jointly samples the template amplitude andr parameter space, we derive 95% upper limits on the primordial tensor-to-scalar ratio from Feldman–Cousins and Bayesian constructions, findingr < 0.11 andr < 0.19, respectively. Roughly half the uncertainty inr derives from noise associated with the template subtraction. New data at 280 GHz fromSpider ’s second flight will complement thePlanck polarization maps, providing powerful measurements of the polarized Galactic dust emission. -
The search for the polarized imprint of primordial gravitational waves in the cosmic microwave background (CMB) as direct evidence of cosmic inflation requires exquisite sensitivity and control over systematics. The next-generation CMB-S4 project intends to improve upon current-generation experiments by deploying a significantly greater number of highly-sensitive detectors, combined with refined instrument components based on designs from field-proven instruments. The Precursor Small Aperture Telescope (PreSAT) is envisioned as an early step to this next generation, which will test prototype CMB-S4 components and technologies within an existing Bicep Array receiver, with the aim of enabling full-stack laboratory testing and early risk retirement, along with direct correlation of laboratory component-level performance measurements with deployed system performance. The instrument will utilize new 95/155 GHz dichroic dual-linear-polarization prototype detectors developed for CMB-S4, cooled to 100mK via the installation of an adiabatic demagnetization refrigerator, along with a prototype readout chain and prototype optics manufactured with wide-band anti-reflection coatings. The experience gained by integrating, deploying, and calibrating PreSAT will also help inform planning for CMB-S4 small aperture telescope commissioning, calibration, and operations well in advance of the fabrication of CMB-S4 production hardware.more » « less