skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamical latent state computation in the male macaque posterior parietal cortex
Abstract Success in many real-world tasks depends on our ability to dynamically track hidden states of the world. We hypothesized that neural populations estimate these states by processing sensory history through recurrent interactions which reflect the internal model of the world. To test this, we recorded brain activity in posterior parietal cortex (PPC) of monkeys navigating by optic flow to a hidden target location within a virtual environment, without explicit position cues. In addition to sequential neural dynamics and strong interneuronal interactions, we found that the hidden state - monkey’s displacement from the goal - was encoded in single neurons, and could be dynamically decoded from population activity. The decoded estimates predicted navigation performance on individual trials. Task manipulations that perturbed the world model induced substantial changes in neural interactions, and modified the neural representation of the hidden state, while representations of sensory and motor variables remained stable. The findings were recapitulated by a task-optimized recurrent neural network model, suggesting that task demands shape the neural interactions in PPC, leading them to embody a world model that consolidates information and tracks task-relevant hidden states.  more » « less
Award ID(s):
1707400
PAR ID:
10404970
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We do not understand how neural nodes operate and coordinate within the recurrent action-perception loops that characterize naturalistic self-environment interactions. Here, we record single-unit spiking activity and local field potentials (LFPs) simultaneously from the dorsomedial superior temporal area (MSTd), parietal area 7a, and dorsolateral prefrontal cortex (dlPFC) as monkeys navigate in virtual reality to ‘catch fireflies’. This task requires animals to actively sample from a closed-loop virtual environment while concurrently computing continuous latent variables: (i) the distance and angle travelled (i.e., path integration) and (ii) the distance and angle to a memorized firefly location (i.e., a hidden spatial goal). We observed a patterned mixed selectivity, with the prefrontal cortex most prominently coding for latent variables, parietal cortex coding for sensorimotor variables, and MSTd most often coding for eye movements. However, even the traditionally considered sensory area (i.e., MSTd) tracked latent variables, demonstrating path integration and vector coding of hidden spatial goals. Further, global encoding profiles and unit-to-unit coupling (i.e., noise correlations) suggested a functional subnetwork composed by MSTd and dlPFC, and not between these and 7a, as anatomy would suggest. We show that the greater the unit-to-unit coupling between MSTd and dlPFC, the more the animals’ gaze position was indicative of the ongoing location of the hidden spatial goal. We suggest this MSTd-dlPFC subnetwork reflects the monkeys’ natural and adaptive task strategy wherein they continuously gaze toward the location of the (invisible) target. Together, these results highlight the distributed nature of neural coding during closed action-perception loops and suggest that fine-grain functional subnetworks may be dynamically established to subserve (embodied) task strategies. 
    more » « less
  2. Neural populations encode the sensory world imperfectly: their capacity is limited by the number of neurons, availability of metabolic and other biophysical resources, and intrinsic noise. The brain is presumably shaped by these limitations, improving efficiency by discarding some aspects of incoming sensory streams, while preferentially preserving commonly occurring, behaviorally-relevant information. Here we construct a stochastic recurrent neural circuit model that can learn efficient, task-specific sensory codes using a novel form of reward-modulated Hebbian synaptic plasticity. We illustrate the flexibility of the model by training an initially unstructured neural network to solve two different tasks: stimulus estimation, and stimulus discrimination. The network achieves high performance in both tasks by appropriately allocating resources and using its recurrent circuitry to best compensate for different levels of noise. We also show how the interaction between stimulus priors and task structure dictates the emergent network representations. 
    more » « less
  3. Abstract The skin conductance (SC) and eye tracking data are two potential arousal-related psychophysiological signals that can serve as the interoceptive unconditioned response to aversive stimuli (e.g. electric shocks). The current research investigates the sensitivity of these signals in detecting mild electric shock by decoding the hidden arousal and interoceptive awareness (IA) states. While well-established frameworks exist to decode the arousal state from the SC signal, there is a lack of a systematic approach that decodes the IA state from pupillometry and eye gaze measurements. We extract the physiological-based features from eye tracking data to recover the IA-related neural activity. Employing a Bayesian filtering framework, we decode the IA state in fear conditioning and extinction experiments where mild electric shock is used. We independently decode the underlying arousal state using binary and marked point process (MPP) observations derived from concurrently collected SC data. Eight of 11 subjects present a significantly (P-value <0.001) higher IA state in trials that were always accompanied by electric shock (CS+US+) compared to trials that were never accompanied by electric shock (CS−). According to the decoded SC-based arousal state, only five (binary observation) and four (MPP observation) subjects present a significantly higher arousal state in CS+US+ trials than CS− trials. In conclusion, the decoded hidden brain state from eye tracking data better agrees with the presented mild stimuli. Tracking IA state from eye tracking data can lead to the development of contactless monitors for neuropsychiatric and neurodegenerative disorders. 
    more » « less
  4. null (Ed.)
    Our decisions often depend on multiple sensory experiences separated by time delays. The brain can remember these experiences and, simultaneously, estimate the timing between events. To understand the mechanisms underlying working memory and time encoding, we analyze neural activity recorded during delays in four experiments on nonhuman primates. To disambiguate potential mechanisms, we propose two analyses, namely, decoding the passage of time from neural data and computing the cumulative dimensionality of the neural trajectory over time. Time can be decoded with high precision in tasks where timing information is relevant and with lower precision when irrelevant for performing the task. Neural trajectories are always observed to be low-dimensional. In addition, our results further constrain the mechanisms underlying time encoding as we find that the linear “ramping” component of each neuron’s firing rate strongly contributes to the slow timescale variations that make decoding time possible. These constraints rule out working memory models that rely on constant, sustained activity and neural networks with high-dimensional trajectories, like reservoir networks. Instead, recurrent networks trained with backpropagation capture the time-encoding properties and the dimensionality observed in the data. 
    more » « less
  5. To adapt to their environments, animals must generate behaviors that are closely aligned to a rapidly changing sensory world. However, behavioral states such as foraging or courtship typically persist over long time scales to ensure proper execution. It remains unclear how neural circuits generate persistent behavioral states while maintaining the flexibility to select among alternative states when the sensory context changes. Here, we elucidate the functional architecture of a neural circuit controlling the choice between roaming and dwelling states, which underlie exploration and exploitation during foraging in C. elegans . By imaging ensemble-level neural activity in freely moving animals, we identify stereotyped changes in circuit activity corresponding to each behavioral state. Combining circuit-wide imaging with genetic analysis, we find that mutual inhibition between two antagonistic neuromodulatory systems underlies the persistence and mutual exclusivity of the neural activity patterns observed in each state. Through machine learning analysis and circuit perturbations, we identify a sensory processing neuron that can transmit information about food odors to both the roaming and dwelling circuits and bias the animal towards different states in different sensory contexts, giving rise to context-appropriate state transitions. Our findings reveal a potentially general circuit architecture that enables flexible, sensory-driven control of persistent behavioral states. 
    more » « less