Sensory signals from the body’s visceral organs (e.g. the heart) can robustly influence the perception of exteroceptive sensations. This interoceptive-exteroceptive interaction has been argued to underlie self-awareness by situating one’s perceptual awareness of exteroceptive stimuli in the context of one’s internal state, but studies probing cardiac influences on visual awareness have yielded conflicting findings. In this study, we presented separate grating stimuli to each of subjects’ eyes as in a classic binocular rivalry paradigm – measuring the duration for which each stimulus dominates in perception. However, we caused the gratings to “pulse” at specific times relative to subjects’ real-time electrocardiogram, manipulating whether pulses occurred during cardiac systole, when baroreceptors signal to the brain that the heart has contracted, or in diastole when baroreceptors are silent. The influential “Baroreceptor Hypothesis” predicts the effect of baroreceptive input on visual perception should be uniformly suppressive. In contrast, we observed that dominance durations increased for systole-entrained stimuli, inconsistent with the Baroreceptor Hypothesis. Further, we show that this cardiac-dependent rivalry effect is preserved in subjects who are at-chance discriminating between systole-entrained and diastole-presented stimuli in a separate interoceptive awareness task, suggesting that our results are not dependent on conscious access to heartbeat sensations.
more »
« less
Eye tracking is more sensitive than skin conductance response in detecting mild environmental stimuli
Abstract The skin conductance (SC) and eye tracking data are two potential arousal-related psychophysiological signals that can serve as the interoceptive unconditioned response to aversive stimuli (e.g. electric shocks). The current research investigates the sensitivity of these signals in detecting mild electric shock by decoding the hidden arousal and interoceptive awareness (IA) states. While well-established frameworks exist to decode the arousal state from the SC signal, there is a lack of a systematic approach that decodes the IA state from pupillometry and eye gaze measurements. We extract the physiological-based features from eye tracking data to recover the IA-related neural activity. Employing a Bayesian filtering framework, we decode the IA state in fear conditioning and extinction experiments where mild electric shock is used. We independently decode the underlying arousal state using binary and marked point process (MPP) observations derived from concurrently collected SC data. Eight of 11 subjects present a significantly (P-value <0.001) higher IA state in trials that were always accompanied by electric shock (CS+US+) compared to trials that were never accompanied by electric shock (CS−). According to the decoded SC-based arousal state, only five (binary observation) and four (MPP observation) subjects present a significantly higher arousal state in CS+US+ trials than CS− trials. In conclusion, the decoded hidden brain state from eye tracking data better agrees with the presented mild stimuli. Tracking IA state from eye tracking data can lead to the development of contactless monitors for neuropsychiatric and neurodegenerative disorders.
more »
« less
- PAR ID:
- 10541821
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- PNAS Nexus
- Volume:
- 3
- Issue:
- 9
- ISSN:
- 2752-6542
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
IntroductionDecoding an individual's hidden brain states in responses to musical stimuli under various cognitive loads can unleash the potential of developing a non-invasive closed-loop brain-machine interface (CLBMI). To perform a pilot study and investigate the brain response in the context of CLBMI, we collect multimodal physiological signals and behavioral data within the working memory experiment in the presence of personalized musical stimuli. MethodsParticipants perform a working memory experiment called then-back task in the presence of calming music and exciting music. Utilizing the skin conductance signal and behavioral data, we decode the brain's cognitive arousal and performance states, respectively. We determine the association of oxygenated hemoglobin (HbO) data with performance state. Furthermore, we evaluate the total hemoglobin (HbT) signal energy over each music session. ResultsA relatively low arousal variation was observed with respect to task difficulty, while the arousal baseline changes considerably with respect to the type of music. Overall, the performance index is enhanced within the exciting session. The highest positive correlation between the HbO concentration and performance was observed within the higher cognitive loads (3-back task) for all of the participants. Also, the HbT signal energy peak occurs within the exciting session. DiscussionFindings may underline the potential of using music as an intervention to regulate the brain cognitive states. Additionally, the experiment provides a diverse array of data encompassing multiple physiological signals that can be used in the brain state decoder paradigm to shed light on the human-in-the-loop experiments and understand the network-level mechanisms of auditory stimulation.more » « less
-
Hennig, Matthias Helge (Ed.)The amygdala responds to a large variety of socially and emotionally salient environmental and interoceptive stimuli. The context in which these stimuli occur determines their social and emotional significance. In canonical neurophysiological studies, the fast-paced succession of stimuli and events induce phasic changes in neural activity. During inter-trial intervals, neural activity is expected to return to a stable and featureless level of spontaneous activity, often called baseline. In previous studies we found that context, such as the presence of a social partner, induces brain states that can transcend the fast-paced succession of stimuli and can be recovered from the spontaneous, inter-trial firing rate of neurons. Indeed, the spontaneous firing rates of neurons in the amygdala are different during blocks of gentle grooming touches delivered by a trusted social partner, and during blocks of non-social airflow stimuli delivered by a computer-controlled air valve. Here, we examine local field potentials (LFPs) recorded during periods of spontaneous activity to determine whether information about context can be extracted from these signals. We found that information about social vs. non-social context is present in the local field potential during periods of spontaneous activity between the application of grooming and airflow stimuli, as machine learning techniques can reliably decode context from spectrograms of spontaneous LFPs. No significant differences were detected between the nuclei of the amygdala that receive direct or indirect inputs from areas of the prefrontal cortex known to coordinate flexible, context-dependent behaviors. The lack of nuclear specificity suggests that context-related synaptic inputs arise from a shared source, possibly interoceptive inputs, that signal the physiological state of the body during social and non-social blocks of tactile stimulation.more » « less
-
Drayton, L (Ed.)Scholars have argued for centuries that affective states involve interoception, or representations of the state of the body. Yet, we lack a mechanistic understanding of how signals from the body are transduced, transmitted, compressed, and integrated by the brains of humans to produce affective states. We suggest that to understand how the body contributes to affect, we first need to understand information flow through the nervous system’s interoceptive pathways. We outline such a model and discuss how unique anatomical and physiological aspects of interoceptive pathways may give rise to the qualities of affective experiences in general and valence and arousal in particular. We conclude by considering implications and future directions for research on interoception, affect, emotions, and human mental experiences.more » « less
-
Abstract Arousal state is regulated by subcortical neuromodulatory nuclei, such as locus coeruleus, which send wide-reaching projections to cortex. Whether higher-order cortical regions have the capacity to recruit neuromodulatory systems to aid cognition is unclear. Here, we hypothesized that select cortical regions activate the arousal system, which, in turn, modulates large-scale brain activity, creating a functional circuit predicting cognitive ability. We utilized the Human Connectome Project 7T functional magnetic resonance imaging dataset (n = 149), acquired at rest with simultaneous eye tracking, along with extensive cognitive assessment for each subject. First, we discovered select frontoparietal cortical regions that drive large-scale spontaneous brain activity specifically via engaging the arousal system. Second, we show that the functionality of the arousal circuit driven by bilateral posterior cingulate cortex (associated with the default mode network) predicts subjects’ cognitive abilities. This suggests that a cortical region that is typically associated with self-referential processing supports cognition by regulating the arousal system.more » « less
An official website of the United States government
