skip to main content

Title: Type and intensity of surrounding human land use, not local environment, shape genetic structure of a native grassland plant

Landscape heterogeneity can shape genetic structure and functional connectivity of populations. When this heterogeneity imposes variable costs of moving across the landscape, populations can be structured according to a pattern of “isolation by resistance” (IBR). At the same time, divergent local environmental filters can limit gene flow, creating an alternative pattern of “isolation by environment” (IBE). Here, we evaluate IBR and IBE in the insect‐pollinated, biennial plantSabatia angularis(L.) Pursh (Gentianaceae) across serpentine grasslands in the fragmented landscape of SE Pennsylvania, USA using ~4500 neutral SNP loci. Specifically, we test the extent to which radical alteration of the landscape matrix by humans has fundamentally altered the cost of movement, imprinting a pattern of IBR dictated by land use type and intensity, and the potential for IBE in relation to a gradient of heavy metal concentrations found in serpentine soil. We reveal a strong signal of IBR and a weak signal of IBE across sites, indicating the greater importance of the landscape matrix in shaping genetic structure ofS. angularispopulations in the study region. Based on Circuitscape and least cost path approaches, we find that both low‐ and high‐intensity urbanization resist gene flow by orders of magnitude greater than “natural” habitats, although resistance to low‐intensity urbanization weakens at larger spatial scales. While cropland presents a substantially lower barrier than urban development, cumulative human land use surrounding populations predicts within‐population genetic diversity and inbreeding inS. angularis. Our results emphasize the role of forest buffers and corridors in facilitating gene flow between serpentine grassland patches and averting local extinction of plant populations.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Molecular Ecology
Page Range / eLocation ID:
p. 639-655
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Disentangling the drivers of genetic differentiation is one of the cornerstones in evolution. This is because genetic diversity, and the way in which it is partitioned within and among populations across space, is an important asset for the ability of populations to adapt and persist in changing environments. We tested three major hypotheses accounting for genetic differentiation—isolation-by-distance (IBD), isolation-by-environment (IBE) and isolation-by-resistance (IBR)—in the annual plant Arabidopsis thaliana across the Iberian Peninsula, the region with the largest genomic diversity. To that end, we sampled, genotyped with genome-wide SNPs, and analyzed 1772 individuals from 278 populations distributed across the Iberian Peninsula. Results IBD, and to a lesser extent IBE, were the most important drivers of genetic differentiation in A. thaliana . In other words, dispersal limitation, genetic drift, and to a lesser extent local adaptation to environmental gradients, accounted for the within- and among-population distribution of genetic diversity. Analyses applied to the four Iberian genetic clusters, which represent the joint outcome of the long demographic and adaptive history of the species in the region, showed similar results except for one cluster, in which IBR (a function of landscape heterogeneity) was the most important driver of genetic differentiation. Using spatial hierarchical Bayesian models, we found that precipitation seasonality and topsoil pH chiefly accounted for the geographic distribution of genetic diversity in Iberian A. thaliana . Conclusions Overall, the interplay between the influence of precipitation seasonality on genetic diversity and the effect of restricted dispersal and genetic drift on genetic differentiation emerges as the major forces underlying the evolutionary trajectory of Iberian A. thaliana . 
    more » « less
  2. Abstract

    Genetic structure in host species is often used to predict disease spread. However, host and pathogen genetic variation may be incongruent. Understanding landscape factors that have either concordant or divergent influence on host and pathogen genetic structure is crucial for wildlife disease management. Devil facial tumour disease (DFTD) was first observed in 1996 and has spread throughout almost the entire Tasmanian devil geographic range, causing dramatic population declines. Whereas DFTD is predominantly spread via biting among adults, devils typically disperse as juveniles, which experience low DFTD prevalence. Thus, we predicted little association between devil and tumour population structure and that environmental factors influencing gene flow differ between devils and tumours. We employed a comparative landscape genetics framework to test the influence of environmental factors on patterns of isolation by resistance (IBR) and isolation by environment (IBE) in devils and DFTD. Although we found evidence for broad‐scale costructuring between devils and tumours, we found no relationship between host and tumour individual genetic distances. Further, the factors driving the spatial distribution of genetic variation differed for each. Devils exhibited a strong IBR pattern driven by major roads, with no evidence of IBE. By contrast, tumours showed little evidence for IBR and a weak IBE pattern with respect to elevation in one of two tumour clusters we identify herein. Our results warrant caution when inferring pathogen spread using host population genetic structure and suggest that reliance on environmental barriers to host connectivity may be ineffective for managing the spread of wildlife diseases. Our findings demonstrate the utility of comparative landscape genetics for identifying differential factors driving host dispersal and pathogen transmission.

    more » « less
  3. Abstract

    Natural landscape heterogeneity and barriers resulting from urbanization can reduce genetic connectivity between populations. The evolutionary, demographic, and ecological effects of reduced connectivity may lead to population isolation and ultimately extinction. Alteration to the terrestrial and aquatic environment caused by urban influence can affect gene flow, specifically for stream salamanders who depend on both landscapes for survival and reproduction. To examine how urbanization affects a relatively common stream salamander species, we compared genetic connectivity ofEurycea bislineata(northern two‐lined salamander) populations within and between streams in an urban, suburban, and rural habitat around the New York City (NYC) metropolitan area. We report reduced genetic connectivity between streams within the urban landscape found to correspond with potential barriers to gene flow, that is, areas with more dense urbanization (roadways, industrial buildings, and residential housing). The suburban populations also exhibited areas of reduced connectivity correlated with areas of greater human land use and greater connectivity within a preserve protected from development. Connectivity was relatively high among neighboring rural streams, but a major roadway corresponded with genetic breaks even though the habitat contained more connected green space overall. Despite greater human disturbance across the landscape, urban and suburban salamander populations maintained comparable levels of genetic diversity to their rural counterparts. Yet small effective population size in the urban habitats yielded a high probability of loss of heterozygosity due to genetic drift in the future. In conclusion, urbanization impacted connectivity among stream salamander populations where its continual influence may eventually hinder population persistence for this native species in urban habitats.

    more » « less
  4. Abstract

    Metapopulation‐structured species can be negatively affected when landscape fragmentation impairs connectivity. We investigated the effects of urbanization on genetic diversity and gene flow for two sympatric amphibian species, spotted salamanders (Ambystoma maculatum) and wood frogs (Lithobates sylvaticus), across a large (>35,000 km2) landscape in Maine, USA, containing numerous natural and anthropogenic gradients. Isolation‐by‐distance (IBD) patterns differed between the species. Spotted salamanders showed a linear and relatively high variance relationship between genetic and geographic distances (r = .057,p < .001), whereas wood frogs exhibited a strongly nonlinear and lower variance relationship (r = 0.429,p < .001). Scale dependence analysis of IBD found gene flow has its most predictable influence (strongest IBD correlations) at distances up to 9 km for spotted salamanders and up to 6 km for wood frogs. Estimated effective migration surfaces revealed contrasting patterns of high and low genetic diversity and gene flow between the two species. Population isolation, quantified as the mean IBD residuals for each population, was associated with local urbanization and less genetic diversity in both species. The influence of geographic proximity and urbanization on population connectivity was further supported by distance‐based redundancy analysis and multiple matrix regression with randomization. Resistance surface modeling found interpopulation connectivity to be influenced by developed land cover, light roads, interstates, and topography for both species, plus secondary roads and rivers for wood frogs. Our results highlight the influence of anthropogenic landscape features within the context of natural features and broad spatial genetic patterns, in turn supporting the premise that while urbanization significantly restricts interpopulation connectivity for wood frogs and spotted salamanders, specific landscape elements have unique effects on these two sympatric species.

    more » « less
  5. Abstract

    Human‐induced transformations of ecosystems usually result in fragmented populations subject to increased extinction risk. Fragmentation is also often associated with novel environmental heterogeneity, which in combination with restricted gene flow may increase the opportunity for local adaptation. To manage at‐risk populations in these landscapes, it is important to understand how gene flow is changing, and how populations respond to habitat loss. We conducted a landscape genomics analysis using Restriction‐site Associated DNA sequencing to investigate the evolutionary response of the critically endangered Dahl's Toad‐headed turtle (Mesoclemmys dahli) to severe habitat modification. The species has lost almost all of its natural habitat in the southwestern part of its range and about 70% in the northeast. Based on least cost path analysis across different resistance surfaces for 3,211 SNPs, we found that the landscape matrix is restricting gene flow, causing the fragmentation of the species into at least six populations. Genome scans and allele‐environment association analyses indicate that the population fragments in the deforested grasslands of the southwest are adaptively different from those in the more forested northeast. Populations in areas with no forest had low levels of adaptive genetic diversity and the fixation of ancestrally‐polymorphic SNPs, consistent with directional selection in this novel environment. Our results suggest that this forest‐stream specialist is adapting to pond‐grassland conditions, but it is also suffering from negative consequences of habitat loss, including genetic erosion, isolation, small effective population sizes, and inbreeding. We recommend gene flow restoration via genetic rescue to counteract these threats, and provide guidance for this strategy.

    more » « less