skip to main content


Title: Stochastic Bullvalene Architecture Modulates Structural Rigidity in π‐Rich Macromolecules
Abstract

The synthesis and processing of π‐rich polymers found in novel electronics and textiles is difficult because chain stiffness leads to low solubility and high thermal transitions. The incorporation of “shape‐shifting” molecular cages into π‐rich backbone provides an ensemble of structural kinks to modulate chain architecture via a self‐contained library of valence isomers. In this work, we report the synthesis and characterization of (bullvalene‐co‐phenylene)s that feature smaller persistence lengths than a prototypical rigid rod polymer, poly(p‐phenylene). By varying the amount of bullvalene incorporation within a poly(p‐phenylene) chain (0–50 %), we can tune thermal properties and solution‐state conformation. These features are caused by stochastic bullvalene isomers within the polymer backbone that result in kinked architectures. Synthetically, bullvalene incorporation offers a facile method to decrease structural rigidity within π‐rich materials without concomitant crystallization. VT NMR experiments confirm that these materials remain dynamic in solution, offering the opportunity for future stimuli‐responsive applications.

 
more » « less
Award ID(s):
2004393
NSF-PAR ID:
10405056
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
19
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The synthesis and processing of π‐rich polymers found in novel electronics and textiles is difficult because chain stiffness leads to low solubility and high thermal transitions. The incorporation of “shape‐shifting” molecular cages into π‐rich backbone provides an ensemble of structural kinks to modulate chain architecture via a self‐contained library of valence isomers. In this work, we report the synthesis and characterization of (bullvalene‐co‐phenylene)s that feature smaller persistence lengths than a prototypical rigid rod polymer, poly(p‐phenylene). By varying the amount of bullvalene incorporation within a poly(p‐phenylene) chain (0–50 %), we can tune thermal properties and solution‐state conformation. These features are caused by stochastic bullvalene isomers within the polymer backbone that result in kinked architectures. Synthetically, bullvalene incorporation offers a facile method to decrease structural rigidity within π‐rich materials without concomitant crystallization. VT NMR experiments confirm that these materials remain dynamic in solution, offering the opportunity for future stimuli‐responsive applications.

     
    more » « less
  2. For heat conduction along polymer chains, a decrease in the axial thermal conductivity often occurs when the polymer structure changes from one-dimensional (1D) to three-dimensional (3D). For example, a single extended aliphatic chain (e.g., polyethylene or poly(dimethylsiloxane)) usually has a higher axial thermal conductivity than its double-chain or crystal counterparts because coupling between chains induces strong interchain anharmonic scatterings. Intuitively, for chains with an aromatic backbone, the even stronger π–π stacking, once formed between chains, should enhance thermal transport across chains and suppress the thermal conductivity along the chains. However, we show that this trend is the opposite in poly(p-phenylene) (PPP), a typical chain with an aromatic backbone. Using molecular dynamics simulations, we found that the axial thermal conductivity of PPP chains shows an anomalous dimensionality dependence where the thermal conductivity of double-chain and 3D crystal structures is higher than that of a 1D single chain. We analyzed the probability distribution of dihedral angles and found that π–π stacking between phenyl rings restricts the free rotation of phenyl rings and forms a long-range order along the chain, thus enhancing thermal transport along the chain direction. Though possessing a stronger bonding strength and stabilizing the multiple-chain structure, π–π stacking does not lead to a higher interchain thermal conductance between phenyl rings compared with that between aliphatic chains. Our simulation results on the effects of π–π stacking provide insights to engineer thermal transport in polymers at the molecular level. 
    more » « less
  3. Abstract

    Dithiophosphoric acids (DTPAs) are an intriguing class of compounds that are sourced from elemental sulfur and white phosphorus and are prepared from the reaction of phosphorus pentasulfide with alcohols. The electrophilic addition of DTPAs to alkenes and unsaturated olefinic substrates is a known reaction, but has not been applied to polymer synthesis and polymer functionalization. We report on the synthesis and application of DTPAs for the functionalization of challenging poly‐enes, namely polyisoprene (PI) and polynorbornene (pNB) prepared by ring‐opening metathesis polymerization (ROMP). The high heteroatom content within DTPA moieties impart intriguing bulk properties to poly‐ene materials after direct electrophilic addition reactions to the polymer backbone introducing DTPAs as side chain groups. The resulting materials possess both enhanced optical and flame retardant properties vs the poly‐ene starting materials. Finally, we demonstrate the ability to prepare crosslinked polydiene films with di‐functional DTPAs, where the crosslinking density and thermomechanical properties can be directly tuned by DTPA feed ratios.

     
    more » « less
  4. Abstract

    Dithiophosphoric acids (DTPAs) are an intriguing class of compounds that are sourced from elemental sulfur and white phosphorus and are prepared from the reaction of phosphorus pentasulfide with alcohols. The electrophilic addition of DTPAs to alkenes and unsaturated olefinic substrates is a known reaction, but has not been applied to polymer synthesis and polymer functionalization. We report on the synthesis and application of DTPAs for the functionalization of challenging poly‐enes, namely polyisoprene (PI) and polynorbornene (pNB) prepared by ring‐opening metathesis polymerization (ROMP). The high heteroatom content within DTPA moieties impart intriguing bulk properties to poly‐ene materials after direct electrophilic addition reactions to the polymer backbone introducing DTPAs as side chain groups. The resulting materials possess both enhanced optical and flame retardant properties vs the poly‐ene starting materials. Finally, we demonstrate the ability to prepare crosslinked polydiene films with di‐functional DTPAs, where the crosslinking density and thermomechanical properties can be directly tuned by DTPA feed ratios.

     
    more » « less
  5. Solid polymer electrolytes offer potential improvements to lithium ion batteries that include extending their operating temperature range and improving the safe use of the batteries by inhibiting lithium dendrite formation. Because solid polymer electrolytes replace traditional liquid electrolytes as the lithium ion transport medium and also act as the electrode separator, these materials must offer good ionic conductivity along with providing good interfacial contact with the electrode material. This work presents the synthesis and characterization of polymer blends comprised poly(ethylene oxide) and phosphonium ionenes. Ionenes are a class of polycation that includes positive charges within the polymer backbone. Because the positive charge is a part of the polymer chain, the spacing and distribution of these charges have a significant impact on the properties of ionenes. This research focuses on determining the role of charge spacing and distribution of charges along the backbone of phosphonium ionenes on their ability to transport lithium ions. To accomplish this, phosphonium ionenes are blended with low molecular weight poly(ethylene oxide) (e.g. less than 3,000 g/mol) at mass ratios of 20:1, 10:1, and 5:1. The resulting blended solid polymer electrolyte membranes are evaluated for their thermal, mechanical and electrochemical properties along with their charge/discharge performance in coin cell batteries. The dependence of phosphonium ionene structure as well as the composition of SPE blends will be presented. 
    more » « less