skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermal Transport in Poly(p-phenylene): Anomalous Dimensionality Dependence and Role of π–π Stacking
For heat conduction along polymer chains, a decrease in the axial thermal conductivity often occurs when the polymer structure changes from one-dimensional (1D) to three-dimensional (3D). For example, a single extended aliphatic chain (e.g., polyethylene or poly(dimethylsiloxane)) usually has a higher axial thermal conductivity than its double-chain or crystal counterparts because coupling between chains induces strong interchain anharmonic scatterings. Intuitively, for chains with an aromatic backbone, the even stronger π–π stacking, once formed between chains, should enhance thermal transport across chains and suppress the thermal conductivity along the chains. However, we show that this trend is the opposite in poly(p-phenylene) (PPP), a typical chain with an aromatic backbone. Using molecular dynamics simulations, we found that the axial thermal conductivity of PPP chains shows an anomalous dimensionality dependence where the thermal conductivity of double-chain and 3D crystal structures is higher than that of a 1D single chain. We analyzed the probability distribution of dihedral angles and found that π–π stacking between phenyl rings restricts the free rotation of phenyl rings and forms a long-range order along the chain, thus enhancing thermal transport along the chain direction. Though possessing a stronger bonding strength and stabilizing the multiple-chain structure, π–π stacking does not lead to a higher interchain thermal conductance between phenyl rings compared with that between aliphatic chains. Our simulation results on the effects of π–π stacking provide insights to engineer thermal transport in polymers at the molecular level.  more » « less
Award ID(s):
1943813
PAR ID:
10485984
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
The Journal of Physical Chemistry B
Volume:
127
Issue:
30
ISSN:
1520-6106
Page Range / eLocation ID:
6804 to 6813
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding thermal transport mechanisms in polymeric composites allows us to expand the boundaries of thermal conductivity in them, either increasing it for more efficient heat dissipation or decreasing it for better thermal insulation. But, these mechanisms are not fully understood. Systematic experimental investigations remain limited. Practical strategies to tune the interfacial thermal resistance (ITR) between fillers and polymers and the thermal conductivity of composites remain elusive. Here, we studied the thermal transport in representative polymer composites, using polyethylene (PE) or polyaniline (PANI) as matrices and graphite as fillers. PANI, with aromatic rings in its backbone, interacts with graphite through strong noncovalent π–π stacking interactions, whereas PE lacks such interactions. We can then quantify how π–π stacking interactions between graphite and polymers enhance thermal transport in composites. PE/graphite and PANI/graphite composites with the same 1.5% filler volume fractions show a ∼22.82% and ∼34.85% enhancement in thermal conductivity compared to pure polymers, respectively. Calculated ITRs in PE/graphite and PANI/graphite are ∼6×10−8 m2 K W−1 and ∼1×10−8 m2 K W−1, respectively, highlighting how π–π stacking interactions reduce ITR. Molecular dynamics (MD) simulations suggest that π–π stacking interactions between PANI chains and graphite surfaces enhance alignment of PANI's aromatic rings with graphite surfaces. This allows more carbon atoms from PANI chains to interact with graphite surfaces at a shorter distance compared to PE chains. Our work indicates that tuning the π–π stacking interactions between polymers and fillers is an effective approach to reduce the ITR and enhance the thermal conductivity of composites. 
    more » « less
  2. π-Conjugated polymers that extend the π-conjugation in more than one dimension are highly sought after for various organic electronic and energy applications. However, the synthesis of solution processable higher dimensional π-conjugated materials is still at its infancy because of strong interchain π–π interactions. The conventional strategy of using linear alkyl pendant chains does not help overcome the strong interchain π–π interactions in higher dimensional π-conjugated materials as they do not directly mask the π-face of the repeat units. While the miniemulsion technique has been employed to generate hyperbranched π-conjugated polymer particles stabilized by surfactants, this approach does not address the molecular level challenges. We have proposed that π-face masking straps mask the π-face of the polymer backbone and therefore help to control π–π interchain interactions in higher dimensional π-conjugated materials at the molecular level. Herein, we have shown that when a strapped aryl dialdehyde monomer (A2) is reacted with a trifunctional 1,3,5-benzenetriamine (B3) using dynamic imine chemistry, a solution dispersible and processable hyperbranched polymer with a degree of branching of 0.46 is generated. Also, by varying the reaction conditions (catalyst, monomer concentration, and solvent), solution dispersible polymer particles of varying diameters ranging from 60 to 300 nm are generated. It is worth noting that despite having the suitable monomer architectures for the formation of ordered frameworks, a hyperbranched polymer is generated because the straps effectively hinder interlayer π–π stacking interactions, thereby preventing the formation of crystalline aggregates that are required for the growth of the former. Since straps stabilize the chains against π–π interactions at the molecular level, they will not only provide synthetic control over the architecture but also remove typical synthetic limitations associated with the miniemulsion technique including functional group intolerance and monomer miscibility. 
    more » « less
  3. Pendant alkyl chains are widely used to successfully obtain a wide variety of soluble linear 1D π-conjugated polymers. Over the past several decades, a wide variety of π-conjugated polymers have been synthesized to realize the desired properties and improve the performance of organic electronic devices. However, this strategy is not suitable for generating soluble 2D-π-conjugated materials, including ladder polymers, nanoribbons, and 2D-π-conjugated polymers, due to strong van der Waals interactions between the ribbons and sheets. The drive to synthesize higher dimensional polymers and to enhance polymers' properties has spurred the exploration of a novel direction in materials chemistry—the synthesis of unconventional monomers and polymers. The Gavvalapalli research group has developed and used cycloalkyl straps containing aryl building blocks for the synthesis of conjugated polymers. These cycloalkyl straps, positioned either above or below the π-conjugation plane, have been shown to directly control the π–π interactions between the polymer chains. We have demonstrated that π-face masking cycloalkyl straps hinder interchain π–π interactions. The first part of this review article highlights the use of cycloalkyl straps for the synthesis of higher dimensional π-conjugated polymers. In this section, we discuss the synthesis of 2D-H-mers, dispersible hyperbranched π-conjugated polymers, and conjugated porous polymers without the pendant solubilizing chains. The second part of the feature article highlights how the cycloalkyl straps can be used to gain control over polymer–acceptor interactions, including the interaction strength and the location of the acceptor along the polymer backbone. We conclude the article with the future outlook on cycloalkyl strap-containing building blocks in the world of conjugated polymers. 
    more » « less
  4. Two-dimensional (2D) polymers are organic analogues of graphene. Compared to graphene, 2D polymers offer a higher degree of tunability in regards to structure, topology, and physical properties. The thermal transport properties of 2D polymers play a crucial role in their applications, yet remain largely unexplored. Using the equilibrium molecular dynamics method, we study the in-plane thermal conductivity of dubbed porous graphene that is comprised of π-conjugated phenyl rings. In contrast to the conventional notion that π-conjugation leads to high thermal conductivity, we demonstrate, for the first time, that π-conjugated 2D polymers can have either high or low thermal conductivity depending on their porosity and structural orientation. The underlying mechanisms that govern thermal conductivity were illustrated through phonon dispersion. The ability to achieve two orders of magnitude variance in thermal conductivity by altering porosity opens up exciting opportunities to tune the thermal transport properties of 2D polymers for a diverse array of applications. 
    more » « less
  5. Controlling network growth and architecture of 3D-conjugated porous polymers (CPPs) is challenging and therefore has limited the ability to systematically tune the network architecture and study its impact on doping efficiency and conductivity. We have proposed that π-face masking straps mask the π-face of the polymer backbone and therefore help to control π–π interchain interactions in higher dimensional π-conjugated materials unlike the conventional linear alkyl pendant solubilizing chains that are incapable of masking the π-face. Herein, we used cycloaraliphane-based π-face masking strapped monomers and show that the strapped repeat units, unlike the conventional monomers, help to overcome the strong interchain π–π interactions, extend network residence time, tune network growth, and increase chemical doping and conductivity in 3D-conjugated porous polymers. The straps doubled the network crosslinking density, which resulted in 18 times higher chemical doping efficiency compared to the control non-strapped-CPP. The straps also provided synthetic tunability and generated CPPs of varying network size, crosslinking density, dispersibility limit, and chemical doping efficiency by changing the knot to strut ratio. For the first time, we have shown that the processability issue of CPPs can be overcome by blending them with insulating commodity polymers. The blending of CPPs with poly(methylmethacrylate) (PMMA) has enabled them to be processed into thin films for conductivity measurements. The conductivity of strapped-CPPs is three orders of magnitude higher than that of the poly(phenyleneethynylene) porous network. 
    more » « less