skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multitrees in Random Graphs
Let $$N=\binom{n}{2}$$ and $$s\geq 2$$. Let $$e_{i,j},\,i=1,2,\ldots,N,\,j=1,2,\ldots,s$$ be $$s$$ independent permutations of the edges $$E(K_n)$$ of the complete graph $$K_n$$. A MultiTree is a set $$I\subseteq [N]$$ such that the edge sets $$E_{I,j}$$ induce spanning trees for $$j=1,2,\ldots,s$$. In this paper we study the following question: what is the smallest $m=m(n)$ such that w.h.p. $[m]$ contains a MultiTree. We prove a hitting time result for $s=2$ and an $$O(n\log n)$$ bound for $$s\geq 3$$.  more » « less
Award ID(s):
2054503
PAR ID:
10405082
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Electronic Journal of Combinatorics
Volume:
30
Issue:
1
ISSN:
1077-8926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let $$k_i\ (i=1,2,\ldots ,t)$$ be natural numbers with $$k_1>k_2>\cdots >k_t>0$$, $$k_1\geq 2$$ and $$t<k_1.$$ Given real numbers $$\alpha _{ji}\ (1\leq j\leq t,\ 1\leq i\leq s)$$, we consider polynomials of the shape $$\begin{align*} &\varphi_i(x)=\alpha_{1i}x^{k_1}+\alpha_{2i}x^{k_2}+\cdots+\alpha_{ti}x^{k_t},\end{align*}$$and derive upper bounds for fractional parts of polynomials in the shape $$\begin{align*} &\varphi_1(x_1)+\varphi_2(x_2)+\cdots+\varphi_s(x_s),\end{align*}$$by applying novel mean value estimates related to Vinogradov’s mean value theorem. Our results improve on earlier Theorems of Baker (2017). 
    more » « less
  2. Let { s j } j = 1 n \left \{ s_{j}\right \} _{j=1}^{n} be positive integers. We show that for any 1 ≤ L ≤ n , 1\leq L\leq n, ‖ ∏ j = 1 n ( 1 − z s j ) ‖ L ∞ ( | z | = 1 ) ≥ exp ⁡ ( 1 2 e L ( s 1 s 2 … s L ) 1 / L ) . \begin{equation*} \left \Vert \prod _{j=1}^{n}\left ( 1-z^{s_{j}}\right ) \right \Vert _{L_{\infty }\left ( \left \vert z\right \vert =1\right ) }\geq \exp \left ( \frac {1}{2e}\frac {L}{\left ( s_{1}s_{2}\ldots s_{L}\right ) ^{1/L}}\right ) . \end{equation*} In particular, this gives geometric growth if a positive proportion of the { s j } \left \{ s_{j}\right \} are bounded. We also show that when the { s j } \left \{ s_{j}\right \} grow regularly and faster than j ( log ⁡ j ) 2 + ε j\left ( \log j\right ) ^{2+\varepsilon } , some ε > 0 \varepsilon >0 , then the norms grow faster than exp ⁡ ( ( log ⁡ n ) 1 + δ ) \exp \left ( \left ( \log n\right ) ^{1+\delta }\right ) for some δ > 0 \delta >0 . 
    more » « less
  3. Morin, Pat; Oh, Eunjin (Ed.)
    Let S be a set of n points in ℝ^d, where d ≥ 2 is a constant, and let H₁,H₂,…,H_{m+1} be a sequence of vertical hyperplanes that are sorted by their first coordinates, such that exactly n/m points of S are between any two successive hyperplanes. Let |A(S,m)| be the number of different closest pairs in the {(m+1) choose 2} vertical slabs that are bounded by H_i and H_j, over all 1 ≤ i < j ≤ m+1. We prove tight bounds for the largest possible value of |A(S,m)|, over all point sets of size n, and for all values of 1 ≤ m ≤ n. As a result of these bounds, we obtain, for any constant ε > 0, a data structure of size O(n), such that for any vertical query slab Q, the closest pair in the set Q ∩ S can be reported in O(n^{1/2+ε}) time. Prior to this work, no linear space data structure with sublinear query time was known. 
    more » « less
  4. Abstract In this paper we consider the following problem: let X k , be a Banach space with a normalised basis ( e (k, j) ) j , whose biorthogonals are denoted by $${(e_{(k,j)}^*)_j}$$ , for $$k\in\N$$ , let $$Z=\ell^\infty(X_k:k\kin\N)$$ be their l ∞ -sum, and let $$T:Z\to Z$$ be a bounded linear operator with a large diagonal, i.e. , $$\begin{align*}\inf_{k,j} \big|e^*_{(k,j)}(T(e_{(k,j)})\big|>0.\end{align*}$$ Under which condition does the identity on Z factor through T ? The purpose of this paper is to formulate general conditions for which the answer is positive. 
    more » « less
  5. Let $${\bf A}$$ be an $$n\times m$$ matrix over $$\mathbf{GF}_2$$ where each column consists of $$k$$ ones, and let $$M$$ be an arbitrary fixed binary matroid. The matroid growth rate theorem implies that there is a constant $$C_M$$ such that $$m\geq C_M n^2$$ implies that the binary matroid induced by {\bf A} contains $$M$$ as a minor. We prove that if the columns of $${\bf A}={\bf A}_{n,m,k}$$ are chosen \emph{randomly}, then there are constants $$k_M, L_M$$ such that $$k\geq k_M$$ and $$m\geq L_M n$$ implies that $${\bf A}$$ contains $$M$$ as a minor w.h.p. 
    more » « less