skip to main content


Title: On lower bounds for Erdős-Szekeres products
Let { s j } j = 1 n \left \{ s_{j}\right \} _{j=1}^{n} be positive integers. We show that for any 1 ≤ L ≤ n , 1\leq L\leq n, ‖ ∏ j = 1 n ( 1 − z s j ) ‖ L ∞ ( | z | = 1 ) ≥ exp ⁡ ( 1 2 e L ( s 1 s 2 … s L ) 1 / L ) . \begin{equation*} \left \Vert \prod _{j=1}^{n}\left ( 1-z^{s_{j}}\right ) \right \Vert _{L_{\infty }\left ( \left \vert z\right \vert =1\right ) }\geq \exp \left ( \frac {1}{2e}\frac {L}{\left ( s_{1}s_{2}\ldots s_{L}\right ) ^{1/L}}\right ) . \end{equation*} In particular, this gives geometric growth if a positive proportion of the { s j } \left \{ s_{j}\right \} are bounded. We also show that when the { s j } \left \{ s_{j}\right \} grow regularly and faster than j ( log ⁡ j ) 2 + ε j\left ( \log j\right ) ^{2+\varepsilon } , some ε > 0 \varepsilon >0 , then the norms grow faster than exp ⁡ ( ( log ⁡ n ) 1 + δ ) \exp \left ( \left ( \log n\right ) ^{1+\delta }\right ) for some δ > 0 \delta >0 .  more » « less
Award ID(s):
1800251
NSF-PAR ID:
10315021
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
Volume:
149
Issue:
748
ISSN:
0002-9939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications. 
    more » « less
  2. Abstract

    Given a sequence $\{Z_d\}_{d\in \mathbb{N}}$ of smooth and compact hypersurfaces in ${\mathbb{R}}^{n-1}$, we prove that (up to extracting subsequences) there exists a regular definable hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^n$ such that each manifold $Z_d$ is diffeomorphic to a component of the zero set on $\Gamma$ of some polynomial of degree $d$. (This is in sharp contrast with the case when $\Gamma$ is semialgebraic, where for example the homological complexity of the zero set of a polynomial $p$ on $\Gamma$ is bounded by a polynomial in $\deg (p)$.) More precisely, given the above sequence of hypersurfaces, we construct a regular, compact, semianalytic hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^{n}$ containing a subset $D$ homeomorphic to a disk, and a family of polynomials $\{p_m\}_{m\in \mathbb{N}}$ of degree $\deg (p_m)=d_m$ such that $(D, Z(p_m)\cap D)\sim ({\mathbb{R}}^{n-1}, Z_{d_m}),$ i.e. the zero set of $p_m$ in $D$ is isotopic to $Z_{d_m}$ in ${\mathbb{R}}^{n-1}$. This says that, up to extracting subsequences, the intersection of $\Gamma$ with a hypersurface of degree $d$ can be as complicated as we want. We call these ‘pathological examples’. In particular, we show that for every $0 \leq k \leq n-2$ and every sequence of natural numbers $a=\{a_d\}_{d\in \mathbb{N}}$ there is a regular, compact semianalytic hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^n$, a subsequence $\{a_{d_m}\}_{m\in \mathbb{N}}$ and homogeneous polynomials $\{p_{m}\}_{m\in \mathbb{N}}$ of degree $\deg (p_m)=d_m$ such that (0.1)$$\begin{equation}b_k(\Gamma\cap Z(p_m))\geq a_{d_m}.\end{equation}$$ (Here $b_k$ denotes the $k$th Betti number.) This generalizes a result of Gwoździewicz et al. [13]. On the other hand, for a given definable $\Gamma$ we show that the Fubini–Study measure, in the Gaussian probability space of polynomials of degree $d$, of the set $\Sigma _{d_m,a, \Gamma }$ of polynomials verifying (0.1) is positive, but there exists a constant $c_\Gamma$ such that $$\begin{equation*}0<{\mathbb{P}}(\Sigma_{d_m, a, \Gamma})\leq \frac{c_{\Gamma} d_m^{\frac{n-1}{2}}}{a_{d_m}}.\end{equation*}$$ This shows that the set of ‘pathological examples’ has ‘small’ measure (the faster $a$ grows, the smaller the measure and pathologies are therefore rare). In fact we show that given $\Gamma$, for most polynomials a Bézout-type bound holds for the intersection $\Gamma \cap Z(p)$: for every $0\leq k\leq n-2$ and $t>0$: $$\begin{equation*}{\mathbb{P}}\left(\{b_k(\Gamma\cap Z(p))\geq t d^{n-1} \}\right)\leq \frac{c_\Gamma}{td^{\frac{n-1}{2}}}.\end{equation*}$$

     
    more » « less
  3. The classic graphical Cheeger inequalities state that if $M$ is an $n\times n$ \emph{symmetric} doubly stochastic matrix, then \[ \frac{1-\lambda_{2}(M)}{2}\leq\phi(M)\leq\sqrt{2\cdot(1-\lambda_{2}(M))} \] where $\phi(M)=\min_{S\subseteq[n],|S|\leq n/2}\left(\frac{1}{|S|}\sum_{i\in S,j\not\in S}M_{i,j}\right)$ is the edge expansion of $M$, and $\lambda_{2}(M)$ is the second largest eigenvalue of $M$. We study the relationship between $\phi(A)$ and the spectral gap $1-\re\lambda_{2}(A)$ for \emph{any} doubly stochastic matrix $A$ (not necessarily symmetric), where $\lambda_{2}(A)$ is a nontrivial eigenvalue of $A$ with maximum real part. Fiedler showed that the upper bound on $\phi(A)$ is unaffected, i.e., $\phi(A)\leq\sqrt{2\cdot(1-\re\lambda_{2}(A))}$. With regards to the lower bound on $\phi(A)$, there are known constructions with \[ \phi(A)\in\Theta\left(\frac{1-\re\lambda_{2}(A)}{\log n}\right), \] indicating that at least a mild dependence on $n$ is necessary to lower bound $\phi(A)$. In our first result, we provide an \emph{exponentially} better construction of $n\times n$ doubly stochastic matrices $A_{n}$, for which \[ \phi(A_{n})\leq\frac{1-\re\lambda_{2}(A_{n})}{\sqrt{n}}. \] In fact, \emph{all} nontrivial eigenvalues of our matrices are $0$, even though the matrices are highly \emph{nonexpanding}. We further show that this bound is in the correct range (up to the exponent of $n$), by showing that for any doubly stochastic matrix $A$, \[ \phi(A)\geq\frac{1-\re\lambda_{2}(A)}{35\cdot n}. \] As a consequence, unlike the symmetric case, there is a (necessary) loss of a factor of $n^{\alpha}$ for $\frac{1}{2}\leq\alpha\leq1$ in lower bounding $\phi$ by the spectral gap in the nonsymmetric setting. Our second result extends these bounds to general matrices $R$ with nonnegative entries, to obtain a two-sided \emph{gapped} refinement of the Perron-Frobenius theorem. Recall from the Perron-Frobenius theorem that for such $R$, there is a nonnegative eigenvalue $r$ such that all eigenvalues of $R$ lie within the closed disk of radius $r$ about $0$. Further, if $R$ is irreducible, which means $\phi(R)>0$ (for suitably defined $\phi$), then $r$ is positive and all other eigenvalues lie within the \textit{open} disk, so (with eigenvalues sorted by real part), $\re\lambda_{2}(R) more » « less
  4. By discretizing an argument of Kislyakov, Naor and Schechtman proved that the 1-Wasserstein metric over the planar grid{0,1,…<#comment/>,n}2\{0,1,\dots , n\}^2hasL1L_1-distortion bounded below by a constant multiple oflog⁡<#comment/>n\sqrt {\log n}. We provide a new “dimensionality” interpretation of Kislyakov’s argument, showing that if{Gn}n=1∞<#comment/>\{G_n\}_{n=1}^\inftyis a sequence of graphs whose isoperimetric dimension and Lipschitz-spectral dimension equal a common numberδ<#comment/>∈<#comment/>[2,∞<#comment/>)\delta \in [2,\infty ), then the 1-Wasserstein metric overGnG_nhasL1L_1-distortion bounded below by a constant multiple of(log⁡<#comment/>|Gn|)1δ<#comment/>(\log |G_n|)^{\frac {1}{\delta }}. We proceed to compute these dimensions for⊘<#comment/>\oslash-powers of certain graphs. In particular, we get that the sequence of diamond graphs{Dn}n=1∞<#comment/>\{\mathsf {D}_n\}_{n=1}^\inftyhas isoperimetric dimension and Lipschitz-spectral dimension equal to 2, obtaining as a corollary that the 1-Wasserstein metric overDn\mathsf {D}_nhasL1L_1-distortion bounded below by a constant multiple oflog⁡<#comment/>|Dn|\sqrt {\log | \mathsf {D}_n|}. This answers a question of Dilworth, Kutzarova, and Ostrovskii and exhibits only the third sequence ofL1L_1-embeddable graphs whose sequence of 1-Wasserstein metrics is notL1L_1-embeddable.

     
    more » « less
  5. Abstract

    Let $f(z) = \sum_{n=1}^\infty a_f(n)q^n$ be a holomorphic cuspidal newform with even integral weight $k\geq 2$, level N, trivial nebentypus and no complex multiplication. For all primes p, we may define $\theta_p\in [0,\pi]$ such that $a_f(p) = 2p^{(k-1)/2}\cos \theta_p$. The Sato–Tate conjecture states that the angles θp are equidistributed with respect to the probability measure $\mu_{\textrm{ST}}(I) = \frac{2}{\pi}\int_I \sin^2 \theta \; d\theta$, where $I\subseteq [0,\pi]$. Using recent results on the automorphy of symmetric power L-functions due to Newton and Thorne, we explicitly bound the error term in the Sato–Tate conjecture when f corresponds to an elliptic curve over $\mathbb{Q}$ of arbitrary conductor or when f has square-free level. In these cases, if $\pi_{f,I}(x) := \#\{p \leq x : p \nmid N, \theta_p\in I\}$ and $\pi(x) := \# \{p \leq x \}$, we prove the following bound: $$ \left| \frac{\pi_{f,I}(x)}{\pi(x)} - \mu_{\textrm{ST}}(I)\right| \leq 58.1\frac{\log((k-1)N \log{x})}{\sqrt{\log{x}}} \qquad \text{for} \quad x \geq 3. $$ As an application, we give an explicit bound for the number of primes up to x that violate the Atkin–Serre conjecture for f.

     
    more » « less