skip to main content


Title: Disentangling the drivers of continental mammalian endemism
Abstract

Endemic species and species with small ranges are ecologically and evolutionarily distinct and are vulnerable to extinction. Determining which abiotic and biotic factors structure patterns of endemism on continents can advance our understanding of global biogeographic processes, but spatial patterns of mammalian endemism have not yet been effectively predicted and reconstructed. Using novel null model techniques, we reconstruct trends in mammalian endemism and describe the isolated and combined effects of physiographic, ecological, and evolutionary factors on endemism. We calculated weighted endemism for global continental ecoregions and compared the spatial distribution of endemism to niche‐based, geographic null models of endemism. These null models distribute species randomly across continents, simulating their range sizes from their degree of climatic specialization. They isolate the effects of physiography (topography and climate) and species richness on endemism. We then ran linear and structural models to determine how topography and historical climate stability influence endemism. The highest rates of mammalian endemism were found in topographically rough, climatically stable ecoregions with many species. The null model that isolated physiography did not closely approximate the observed distribution of endemism (r2 = .09), whereas the null model that incorporated both physiography and species richness did (r2 = .59). The linear models demonstrate that topography and climatic stability both influenced endemism values, but that average climatic niche breadth was not highly correlated with endemism. Climate stability and topography both influence weighted endemism in mammals, but the spatial distribution of mammalian endemism is driven by a combination of physiography and species richness. Despite its relationship to individual range size, average climate niche breadth has only a weak influence on endemism. The results highlight the importance of historical biogeographic processes (e.g. centers of speciation) and geography in driving endemism patterns, and disentangle the mechanisms structuring species ranges worldwide.

 
more » « less
Award ID(s):
1945013
NSF-PAR ID:
10405218
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
29
Issue:
9
ISSN:
1354-1013
Page Range / eLocation ID:
p. 2421-2435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding variation in food web structure over large spatial scales is an emerging research agenda in food web ecology. The density of predator–prey links in a food web (i.e., connectance) is a key measure of network complexity that describes the mean proportional dietary breadth of species within a food web. Connectance is a critical component of food web robustness to species loss: food webs with lower connectance have been shown to be more susceptible to secondary extinctions. Identifying geographic variation in food web connectance and its drivers may provide insight into community robustness to species loss. We investigated the food web connectance of ground-dwelling tropical forest mammal communities in multiple biogeographic regions to test for differences among regions in food web connectance and to test three potential drivers: primary productivity, contemporary anthropogenic pressure, and variation in mammal body mass distributions reflective of historical extinctions. Mammal communities from fifteen protected forests throughout the Neo-, Afro-, and Asian tropics were identified from systematic camera trap arrays. Predator–prey interaction data were collected from published literature, and we calculated connectance for each community as the number of observed predator–prey links relative to the number of possible predator–prey links. We used generalized linear models to test for differences among regions and to identify the site level characteristics that best predicted connectance. We found that mammal food web connectance varied significantly among continents and that body size range was the only significant predictor. More possible predator–prey links were observed in communities with smaller ranges in body size and therefore sites with smaller body size ranges had higher mean proportional dietary breadth. Specifically, mammal communities in the Neotropics and in Madagascar had significantly higher connectance than mammal communities in Africa. This geographic variation in contemporary mammalian food web structure may be the product of historical extinctions in the Late Quaternary, which led to greater losses of large-bodied species in the Neotropics and Madagascar thus contributing to higher average proportional dietary breadth among the remaining smaller bodied species in these regions.

     
    more » « less
  2. Abstract Aim

    The tropical niche conservatism (TNC) hypothesis is one of the most prominent evolutionary hypotheses that has been supported as an explanation for the diversity gradients of several animal taxa, mainly vertebrates. However, the validity of TNC for less‐known taxa such as disease vectors is not clear. Here, we test predictions of TNC in driving the geographical co‐occurrence among triatomine species, vector insects of Chagas disease. We aim to infer the relative effects of ecological and evolutionary processes in determining triatomine species richness at broad spatial scales.

    Location

    America.

    Taxon

    Triatominae (Hemiptera: Reduviidae).

    Methods

    We gathered distributional, phylogenetic and climatic information for 63 triatomine species. We apply the phylogenetic field (PF) framework based on the phylogenetic structure of species co‐occurrences, considering their climatic preferences. We defined PFs of species by estimating the phylogenetic structure of species co‐occurrence within a focal species’ range. Likewise, climatic conditions within focal species’ ranges were defined as their preferred climates. We applied a spatial‐phylogenetic statistical framework to evaluate geographical variation of species’ co‐occurrence and tested the significance of PFs based on biogeographically informed null models.

    Results

    Phylogenetic fields of 17 out of 59 triatomine species showed a trend from overdispersed to clustered, coincident with tropical to subtropical–temperate climate. Triatomines co‐occur with more closely related species in temperate areas and more distantly related species in tropical areas. Temperature seasonality was inversely related to the phylogenetic structure of co‐occurrence within species ranges.

    Main conclusions

    Geographical co‐occurrence among triatomine species revealed a tropical to subtropical–temperate gradient from overdispersed to clustered PFs and a correspondence between the type of climate in which these species are found and their PFs. Phylogenetic structure within triatomine ranges is explained by their evolutionary history. Our study provides a methodological framework to evaluate the New World triatomine geographical co‐occurrence patterns under a phylogenetic perspective and our results make an important contribution to the understanding of the broad‐scale biodiversity patterns in Triatominae.

     
    more » « less
  3. Abstract

    Many plant species exhibit strong association with topographic habitats at local scales. However, the historical biogeographic and physiological drivers of habitat specialization are still poorly understood, and there is a need for relatively easy‐to‐measure predictors of species habitat niche breadth. Here, we explore whether species geographic range, climatic envelope, or intraspecific variability in leaf traits is related to the degree of habitat specialization in a hyperdiverse tropical tree community in Amazonian Ecuador. Contrary to our expectations, we find no effect of the size of species geographic ranges, the diversity of climate a species experiences across its range, or intraspecific variability in leaf traits in predicting topographic habitat association in the ~300 most common tropical tree species in a 25‐ha tropical forest plot. In addition, there was no phylogenetic signal to habitat specialization. We conclude that species geographic range size, climatic niche breadth, and intraspecific variability in leaf traits fail to capture the habitat specialization patterns observed in this highly diverse tropical forest.

     
    more » « less
  4. ABSTRACT Aim

    The distributions and interactions of co‐occurring species may change if their ranges shift asymmetrically in response to rapid climate change. We aim to test whether two currently interacting taxa, valley oak (Quercus lobata) and lace lichen (Ramalina menziesii), have had a long‐lasting historical association and are likely to continue to associate in the future.

    Location

    Central western California, western United States of America

    Methods

    Using population genetic analyses andMaxEntsoftware for ecological niche modelling, we estimate species’ distributions during the Last Interglacial, the Last Glacial Maximum, present, and future periods. Mantel and vertex (genetic connection) tests were used to examine the spatial congruence among taxa. To compare the modelled response to climate change, we estimated migration speed between respective time periods using vector analysis.

    Results

    We found significant genetic congruence between valley oak and the lichen's green algal photobiont, independent of geographic isolation and habitat isolation, which is consistent with long‐term association. Ecological niche models under past and future climate scenarios indicate that overlap of climatic niche sharing between valley oak and lace lichen might decrease in the future. Our models indicate that the speed of shifts in climate niches between these two taxa differed significantly in past periods from that of the present period.

    Main conclusions

    Our findings reveal that historical interactions between valley oak and lace lichen correlate with long‐term sharing of past climate niches. However, the future association of lace lichen with valley oak may be disrupted in parts of its current distribution due to differential discordance of climate niche shifts, species’ movements and generation times. This study illustrates the processes and patterns that allow long‐term association during historic climate change and how they are likely to change during rapid climate change.

     
    more » « less
  5. Abstract Aim

    Ecological niches shape species commonness and rarity, yet, the relative importance of different niche mechanisms within and across ecosystems remains unresolved. We tested the influence of niche breadth (range of environmental conditions where species occur) and niche position (marginality of a species’ environmental distribution relative to the mean environmental conditions of a region) on tree‐species abundance and occupancy across three biogeographic regions.

    Location

    Argentinian Andes; Bolivian Amazon; Missouri Ozarks.

    Time period

    2002–2010.

    Major taxa studied

    Trees.

    Methods

    We calculated abiotic‐niche breadths and abiotic‐niche positions using 16 climate, soil and topographic variables. For each region, we used model selection to test the relative influence of niche breadth and niche position on local abundance and occupancy in regional‐scale networks of 0.1‐ha forest plots. To account for species–environment associations caused by other mechanisms (e.g., dispersal), we used null models that randomized associations between species occurrences and environmental variables.

    Results

    We found strong support for the niche‐position hypothesis. In all regions, species with higher local abundance and occupancy occurred in non‐marginal environments. Observed relationships between occupancy and niche position also differed from random species–environment associations in all regions. Surprisingly, we found little support for the niche‐breadth hypothesis. Observed relationships between both local abundance and niche breadth, and occupancy and niche breadth, did not differ from random species–environment associations.

    Main conclusion

    Niche position was more important than niche breadth in shaping species commonness and rarity across temperate, sub‐tropical and tropical forests. In all forests, tree species with widespread geographic distributions were associated with environmental conditions commonly found throughout the region, suggesting that niche position has similar effects on species occupancy across contrasting biogeographic regions. Our findings imply that conservation efforts aimed at protecting populations of common and rare tree species should prioritize conservation of both common and rare habitats.

     
    more » « less