skip to main content


Title: Untangling the importance of niche breadth and niche position as drivers of tree species abundance and occupancy across biogeographic regions
Abstract Aim

Ecological niches shape species commonness and rarity, yet, the relative importance of different niche mechanisms within and across ecosystems remains unresolved. We tested the influence of niche breadth (range of environmental conditions where species occur) and niche position (marginality of a species’ environmental distribution relative to the mean environmental conditions of a region) on tree‐species abundance and occupancy across three biogeographic regions.

Location

Argentinian Andes; Bolivian Amazon; Missouri Ozarks.

Time period

2002–2010.

Major taxa studied

Trees.

Methods

We calculated abiotic‐niche breadths and abiotic‐niche positions using 16 climate, soil and topographic variables. For each region, we used model selection to test the relative influence of niche breadth and niche position on local abundance and occupancy in regional‐scale networks of 0.1‐ha forest plots. To account for species–environment associations caused by other mechanisms (e.g., dispersal), we used null models that randomized associations between species occurrences and environmental variables.

Results

We found strong support for the niche‐position hypothesis. In all regions, species with higher local abundance and occupancy occurred in non‐marginal environments. Observed relationships between occupancy and niche position also differed from random species–environment associations in all regions. Surprisingly, we found little support for the niche‐breadth hypothesis. Observed relationships between both local abundance and niche breadth, and occupancy and niche breadth, did not differ from random species–environment associations.

Main conclusion

Niche position was more important than niche breadth in shaping species commonness and rarity across temperate, sub‐tropical and tropical forests. In all forests, tree species with widespread geographic distributions were associated with environmental conditions commonly found throughout the region, suggesting that niche position has similar effects on species occupancy across contrasting biogeographic regions. Our findings imply that conservation efforts aimed at protecting populations of common and rare tree species should prioritize conservation of both common and rare habitats.

 
more » « less
Award ID(s):
1836353
NSF-PAR ID:
10455084
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
29
Issue:
9
ISSN:
1466-822X
Page Range / eLocation ID:
p. 1542-1553
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    We examined tree beta diversity in four biogeographical regions with contrasting environmental conditions, latitude, and diversity. We tested: (a) the influence of the species pool on beta diversity; (b) the relative contribution of niche‐based and dispersal‐based assembly to beta diversity; and (c) differences in the importance of these two assembly mechanisms in regions with differing productivity and species richness.

    Location

    Lowland and montane tropical forests in the Madidi region (Bolivia), lowland temperate forests in the Ozarks (USA), and montane temperate forests in the Cantabrian Mountains (Spain).

    Methods

    We surveyed woody plants with a diameter ≥2.5 cm following a standardized protocol in 236 0.1‐ha forest plots in four different biogeographical regions. We estimated the species pool at each region and used it to recreate null communities determined entirely by the species pool. Observed patterns of beta diversity smaller or greater than the null‐expected patterns of beta diversity implies the presence of local assembly mechanisms beyond the influence of the species pool. We used variation‐partitioning analyses to compare the contribution of niche‐based and dispersal‐based assembly to patterns of observed beta diversity and their deviations from null models among the four regions.

    Results

    (a) Differences in species pools alone did not explain observed differences in beta diversity among biogeographic regions. (b) In 3/4 regions, the environment explained more of the variation in beta diversity than spatial variables. (c) Spatial variables explained more of the beta diversity in more diverse and more productive regions with more rare species (tropical and lower‐elevation regions) compared to less diverse and less productive regions (temperate and higher‐elevation regions). (d) Greater alpha or gamma diversity did not result in higher beta diversity or stronger correlations with the environment.

    Conclusion

    Overall, the observed differences in beta diversity are better explained by differences in community assembly mechanism than by biogeographical processes that shaped the species pool.

     
    more » « less
  2. Premise

    The distributions of plant clades are shaped by abiotic and biotic factors as well as historical aspects such as center of origin. Dispersals between distant areas may lead to niche evolution when lineages are established in new environments. Alternatively, dispersing lineages may exhibit niche conservatism, moving between areas with similar environmental conditions. Here we test these contrasting hypotheses in the Datureae clade (Solanaceae).

    Methods

    We used maximum likelihood methods to estimate the ancestral range of Datureae along with the history of biogeographic events. We then characterized the niche of each taxon using climatic and soil variables and tested for shifts in environmental niche optima. Finally, we examined how these shifts relate to the niche breadth of taxa and clades within Datureae and the degree of overlap between them.

    Results

    Datureae originated in the Andes and subsequently expanded its range to North America and non‐Andean regions of South America. The ancestral niche, and that of mostDaturaandTrompettiaspecies, is dry, whileBrugmansiaspecies likely shifted toward a more mesic environment. Nonetheless, most Datureae present moderate to high overlap in niche breadth today.

    Conclusions

    The expansion of Datureae into North America was associated with niche conservatism, with dispersal into similarly dry areas as occupied by the ancestral lineage. Subsequent niche evolution, including the apparent shift to a mesic niche inBrugmansia, diversified the range of habitats occupied by species in the tribe Datureae but also led to significant niche overlap among the three genera.

     
    more » « less
  3. PREMISE

    Environmental heterogeneity influences plant distributions and diversity at several spatial scales. In temperate forests, fine‐scale environmental variation may promote local coexistence among herbaceous species by allowing plants to spatially partition microsites within forest stands. Here we argue that shallow soils, low soil water‐holding capacity and fertility, and reduced light near tree boles should favor short, shallow‐rooted, evergreen species likeAnemone acutilobawith low moisture, nutrient, and light requirements. Farther from trees, richer, deeper soils should favor taller, deeper‐rooted herbs with greater moisture and nutrient demands, such asSanguinaria canadensisandTrillium flexipes.

    METHODS

    We tested these hypotheses by mapping the fine‐scale distributions ofAnemone,Sanguinaria, andTrilliumindividuals within a 50 × 50 m plot, comparing local species’ distributions with respect to soil depth and proximity to neighboring trees, and characterizing intraspecific and interspecific spatial associations.

    RESULTS

    Local plant distributions were consistent with our predictions based on leaf height, physiology, and phenology.Anemonewas found in microsites on shallower soils and closer to trees than eitherSanguinariaorTrillium. In all three species, individual plants were spatially aggregated within 2 m, but spatially segregated from individuals of the other species beyond 2 m.

    CONCLUSIONS

    Differential plant responses to fine‐scale environmental heterogeneity and observed spatial associations suggest that local species‐environment associations could facilitate coexistence. These findings illustrate how fine‐scale environmental heterogeneity coupled with phenological and physiological differences likely contribute to spatial niche partitioning among spring‐flowering forest herbs and maintain high local plant diversity within temperate forests.

     
    more » « less
  4. Abstract Aim

    While we understand broad climate drivers of insect distributions throughout the Arctic, less is known about the role of spatial processes in determining these relationships. As such, there is a need to understand how spatial controls may influence our interpretations of chironomid environment relationships. Here, we evaluated whether the distribution of chironomids followed spatial gradients, or were primarily controlled by environmental factors.

    Location

    Eastern Canadian Arctic, Greenland, Iceland.

    Taxon

    Non‐biting midges (Chironomidae).

    Methods

    We examined chironomid assemblages from 239 lakes in the western North Atlantic Arctic region (specifically from the Arctic Archipelago of Canada, two parts of west Greenland (the southwest and central west) and northwest Iceland). We used a combination of unconstrained ordination (Self Organizing Maps); a simple method with only one data matrix (community data), and constrained ordination (Redundancy Analysis); a canonical ordination with two datasets where we extracted structure of community related to environmental data. These methods allowed us to model chironomid assemblages across a large bioregional dimension and identify specific differences between regions that were defined by common taxa represented across all regions in high frequencies, as well as rare taxa distinctive to each region found in low frequencies. We then evaluated the relative importance of spatial processes versus local environmental factors.

    Results

    We find that environmental controls explained the largest amount of variation in chironomid assemblages within each region, and that spatial controls are only significant when crossing between regions. Broad‐scale biogeographic effects on chironomid distributions are reflected by the distinct differences among chironomid assemblages of Iceland, central‐west Greenland, and eastern Canada, defined by the presence of certain common and low‐frequency, rare taxa for each region. Environmental gradients, especially temperature, defined species distributions within each region, whereas spatial processes combine with environmental gradients in determining what mix of species characterizes each broad and geographically distinct island region in our study.

    Main conclusions

    While biogeographic context is important for defining interpretations of environmental controls on species distributions, the primary control on distributions within regions is environmental. These influences are fundamentally important for reconstructing past environmental change and better understanding historical distributions of these insect indicators.

     
    more » « less
  5. Abstract

    Species‐abundance distributions (SADs) describe the spectrum of commonness and rarity in a community. Beyond the universal observation that most species are rare and only a few common, more‐precise description of SAD shape is controversial. Furthermore, the mechanisms behind SADs and how they vary along environmental gradients remain unresolved. We lack a general, non‐neutral theory of SADs. Here, we develop a trait‐based framework, focusing on a local community coupled to the region by dispersal. The balance of immigration and exclusion determines abundances, which vary over orders‐of‐magnitude. The local trait‐abundance distribution (TAD) reflects a transformation of the regional TAD. The left‐tail of the SAD depends on scaling exponents of the exclusion function and the regional species pool. More‐complex local dynamics can lead to multimodal TADs and SADs. Connecting SADs with trait‐based ecological theory provides a way to generate more‐testable hypotheses on the controls over commonness and rarity in communities.

     
    more » « less