skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Palaeoenvironmental Reconstruction Through Granulometric Analysis of a Palaeolake Deposit at Bhikiyasain, Kumaun Lesser Himalaya
Grain size analysis is an essential tool for classifying sedimentary environments. The main aim of the current research is to use granulometric analysis of the Bhikiysain palaeolake sequence along the Ramganga river to describe changes in the depositional environment within the lake during the late Quaternary. The granulometric analysis was conducted using a laser particle size analyser on 32 samples, collected at 10 cm intervals in a vertical palaeolake profile, at Bhikiyasain (Ramganga Basin). The results of the grain-size analysis indicate that the size distribution of the sediment is unimodal. The unimodal size distribution of the sediment suggests that the sediment was supplied via fluvial action. The Bhikiyasain Basin (29°43.106’ N; 79°15.682’ E) underwent tectonic activity around 44 ka, resulting in the ponding of the Ramganga river and the formation of palaeolake deposit. Based on grain size analysis, variation in the colour and lithofacies, the entire profile has been divided into 6 different zones (zones 1 to 6). The silt has the highest concentration in all the zones except for zones 1 and 3. Zones with high silt concentration are inferred to represent low energy depositional environments during the time of deposition. The higher amount of sand concentration in zones 1 and 3 represent higher energy depositional environment. For the whole profile, the sorting of the samples varies between 1.1 and 2.0, indicating poor sorting of the samples. The poorly sorted sediment in all six zones represents limited transportation of sediment from the catchment and also suggests that the sediment was deposited in a low energy environment. The ternary plots also signify the dominance of silt followed by sand and clay. The skewness values range from 0.1 to 0.5 which indicates that the samples are symmetrical to very finely skewed. Variability in the skewness values may be due to changes in the intensity of wind and hydrodynamic conditions of the lake. The kurtosis value ranges from 0.9-1.4, indicating the samples are platykurtic, leptokurtic and mesokurtic in nature. Variability in the kurtosis may be due to changes in the flow characteristics of the depositional medium.  more » « less
Award ID(s):
2026311
PAR ID:
10405315
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Climate Change
Volume:
9
Issue:
1
ISSN:
2395-7611
Page Range / eLocation ID:
25 to 37
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Grain size distributions of 311 sediment samples from Sites U1450 and U1451 of International Ocean Discovery Program (IODP) Expedition 354 were determined using laser diffraction. Most of the samples were from turbidites, but some hemipelagic beds were also examined. The mean grain size values show that silt-sized particles are the dominant textural class, whereas the grain size values range from clay to coarse-grained sand. An overall upward change in mean grain size value reveals a slight coarsening-upward trend. However, other parameters such as standard deviation, skewness, and kurtosis show no systematic relationship with depth in the holes. The analyzed samples cover the age range from recent to early Miocene. Shepard textural classification plots show the sediments are mostly sandy silts, silty sands, and clayey silts with a few silts and sands also present. Frequency curve plots of samples from individual turbidite beds show inversely graded beds are most common at Site U1450, whereas thicker massive beds are dominant at Site U1451. 
    more » « less
  2. Two lake cores from Khajjiar (length 746 cm) and Rewalsar lakes (length 647 cm) in Himachal Pradesh (India) were retrieved to understand the sedimentological characteristics and variation in grain size distribution. Both the lake cores are Upper Holocene in age. The Rewalsar lake sediments are composed predominantly of silt with small amounts of clay, whereas the Khajjiar sediments contain sand, silt and clay and both cores have high carbonaceous matter. The standard deviation ranges from 0.88 ϕ to 2.56 ϕ for Khajjiar lake and from 0.957 ϕ to 2.264 ϕ for Rewalsar lake, indicating poorly to very poorly sorted core sediments. The values of the Kurtosis vary between 0.678 ϕ and 1.205 ϕ for Khajjiar lake and from 0.8 ϕ to 1.2.4 ϕ for Rewalsar lake, viewing platykurtic to leptokurtic nature. Further, the skewness value ranges from -0.097 ϕ to 0.240 ϕ for Khajjiar lake and 0.079 ϕ to 0.25 ϕ for Rewalsar lake revealing fine to symmetrical skewness model. The bivariate plots by using the grain-size parameters were also interpreted. The Total Organic Carbon (TOC) is higher in the Khajjiar lake sediments (0.9 to 31.2%; av. 10.6%), compared to that in the Rewalsar lake sediments (1.0 to 9.0; av. 2.6%). The sedimentological characteristics indicate that the energy conditions were linked to the climatic conditions prevailing in the area. In general, the Khajjiar lake core is composed of relatively coarser sediments and more affected by arid conditions while the fine fraction of the Rewalsar shows the consequence of lower energy conditions. The Khajjiar lake shows the transition from fluctuating conditions (zone 1) to humid (zone 2) to arid (zone 3), while the Rewalsar shows the change from fluctuating (zone 1) to humid conditions (zones 2 and 3). The similarity between zone 1 and 2 of both the lake profiles shows that both lakes have experienced similar climatic conditions during the deposition, revealing domination of fluctuating and arid conditions. 
    more » « less
  3. This dataset contains grain size records from three Integrated Ocean Drilling Program core sites (U1345, U1343, and U1339) in the Bering Sea. These records are used to determine the effectiveness of different grain size parameters as proxies for sediment transport, current strength, and primary productivity in the Bering Sea during a past warm interval (Marine Isotope Stage 11, 424-374 thousand years ago (ka)). Grain size is measured using a laser diffraction particle size analyzer (Malvern Mastersizer 3000), and is reported for bulk sediments, and for the terrigenous fraction only. The raw dataset provided by the Malvern software includes the volume % of grains in 109 bin sizes, as well as the 10th (Dx10), 50th (Dx50) and 90th (Dx90) percentiles. We also provide the volume distribution of grains in the following size fractions: clay (less than 2 micrometers (μm)); silt (2-63 μm); sand (63-2000 μm); gravel (greater than 2000 μm); ice-rafted debris (greater than 150 μm; greater than 250 μm), and sortable silt (10-63 μm). Additional grain size parameters, including mean size, sorting and skewness, are calculated in GRADISTAT. 
    more » « less
  4. This file contains grain-size data from seabed shipek grab samples collected from R/V Ukpik in summer 2021 as part of NSF project 1913195 (Arctic Shelf sediment fate – an observational and modeling study of sediment pathways and morphodynamic feedbacks in a changing polar environment). Samples were collected from across Harrison Bay on the Alaskan Beaufort Shelf, north of the Colville River and between Oliktok Point and Cape Halkett. Samples were bagged in the field and returned to the University of North Carolina at Chapel Hill where grain-size analyses were performed using an Escitec Bettersizer S3Plus laser diffraction sensor. Samples were sonicated for two minutes prior to analyses. Samples ranged from well sorted sands (typically medium sand or fine) to poorly sorted bimodal sands and muds to unimodal muds. In the field, samples exhibited diverse textures including mud clasts and very stiff muds. 
    more » « less
  5. ABSTRACT Glacial marine sediment deposition varies both spatially and temporally, but nearly all studies evaluate down-core (∼ time) variations in sediment variables with little consideration for across core variability, or even the consistency of a data set over distance scales of 1 to 1000 m. Grain size and quantitative X-ray diffraction (qXRD) methods require only ≤ 1 g of sediment and thus analyses assume that the identification of coarse sand (i.e., ice-rafted debris) and sediment mineral composition are representative of the depth intervals. This assumption was tested for grain size and mineral weight % on core MD99-2317, off East Greenland. Samples were taken from two sections of the core that had contrasting coarse-sand content. A total of fourteen samples were taken consisting of seven (vertical) and two (horizontal) samples, with five replicates per sample for qXRD analyses and ∼ 10 to 20 replicates for grain size. They had an average dry weight of 10.5 ± 0.5 g and are compared with two previous sets of sediment samples that averaged 54.1 ± 18.9 g and 20.77 ± 5.8 g dry weight. The results indicated some significant differences between the pairs of samples for grain-size parameters (mean sortable silt, and median grain size) but little difference in the estimates of mineral weight percentages. Out of 84 paired mineral and grain-size comparisons only 17 were significantly different at p = < 0.05 in the post-hoc Scheffe test, all of which were linked to grain-size attributes. 
    more » « less