Abstract I employ the Lucy rectification algorithm to recover the inclination-corrected distribution of local disk galaxies in the plane of absolute magnitude (Mi) and Hivelocity width (W20). By considering the inclination angle as a random variable with a known probability distribution, the novel approach eliminates one major source of uncertainty in studies of the Tully–Fisher relation: inclination angle estimation from axial ratio. Leveraging the statistical strength derived from the entire sample of 28,264 Hi-selected disk galaxies atz< 0.06 from the Arecibo Legacy Fast ALFA survey, I show that the restored distribution follows a sharp correlation that is approximately a power law between −16 >Mi> −22: , withM0= −19.77± 0.04 andβ= 4.39 ± 0.06. At the brighter end (Mi< −22), the slope of the correlation decreases toβ≈ 3.3, confirming previous results. Because the method accounts for measurement errors, the intrinsic dispersion of the correlation is directly measured: dex between −17 >Mi> −23, whileσ(Mi) decreases from ∼0.8 in slow rotators to ∼0.4 in fast rotators. The statistical rectification method holds significant potential, especially in the studies of intermediate-to-high-redshift samples, where limited spatial resolution hinders precise measurements of inclination angles.
more »
« less
Magnetic Misalignment of Interstellar Dust Filaments
Abstract We present evidence for scale-independent misalignment of interstellar dust filaments and magnetic fields. We estimate the misalignment by comparing millimeter-wave dust-polarization measurements from Planck with filamentary structures identified in neutral-hydrogen (Hi) measurements from Hi4PI. We find that the misalignment angle displays a scale independence (harmonic coherence) for features larger than the Hi4PI beamwidth (16.′2). We additionally find a spatial coherence on angular scales of . We present several misalignment estimators formed from the auto- and cross-spectra of dust-polarization and Hi-based maps, and we also introduce a map-space estimator. Applied to large regions of the high-Galactic-latitude sky, we find a global misalignment angle of ∼2°, which is robust to a variety of masking choices. By dividing the sky into small regions, we show that the misalignment angle correlates with the parity-violatingTBcross-spectrum measured in the Planck dust maps. The misalignment paradigm also predicts a dustEBsignal, which is of relevance in the search for cosmic birefringence but as yet undetected; the measurements ofEBare noisier than those ofTB, and our correlations ofEBwith misalignment angle are found to be weaker and less robust to masking choices. We also introduce an Hi-based dust-polarization template constructed from the Hessian matrix of the Hiintensity, which is found to correlate more strongly than previous templates with Planck dustBmodes.
more »
« less
- Award ID(s):
- 2106607
- PAR ID:
- 10405364
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 946
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 106
- Size(s):
- Article No. 106
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report statistically significant detection of Hi21 cm emission from intermediate-redshift (z ≈ 0.2–0.6) galaxies. By leveraging multisightline galaxy survey data from the Cosmic Ultraviolet Baryon Survey and deep radio observations from the MeerKAT Absorption Line Survey, we have established a sample of ≈6000 spectroscopically identified galaxies in 11 distinct fields to constrain the neutral gas content at intermediate redshifts. The galaxies sample a broad range in stellar mass, from to , with a median of and a wide range in redshift fromz ≈ 0.24 toz ≈ 0.63 with a median of 〈z〉med = 0.44. While no individual galaxies show detectable Hiemission, the emission line signal is detected in the stacked spectra of all subsamples at greater than 4σsignificance. The observed total Hi21 cm line flux translates to a Himass,MH I≈1010M⊙. We find a high Hi-to-stellar-mass ratio ofMHI/Mstar ≈ 6 for low-mass galaxies with (>3.7σ). For galaxies with , we findMHI/Mstar ≈ 0.3 (>4.7σ). In addition, the redshift evolution of Himass, 〈MH I〉, in both low- and high-mass field galaxies, inferred from the stacked emission-line signal, aligns well with the expectation from the cosmic star formation history. This suggests that the overall decline in the cosmic star formation activity across the general galaxy population may be connected to a decreasing supply of neutral hydrogen. Finally, our analysis has revealed significant 21 cm signals at distances greater than 75 kpc from these intermediate-redshift galaxies, indicating a substantial reservoir of Higas in their extended surroundings.more » « less
-
Abstract Utilizing Planck polarized dust emission maps at 353 GHz and large-area maps of the neutral hydrogen (Hi) cold neutral medium (CNM) fraction (fCNM), we investigate the relationship between dust polarization fraction (p353) andfCNMin the diffuse high latitude ( ) sky. We find that the correlation betweenp353andfCNMis qualitatively distinct from thep353–Hicolumn density (NHi) relationship. At low column densities (NHi< 4 × 1020cm−2) wherep353andNHiare uncorrelated, there is a strong positivep353–fCNMcorrelation. We fit thep353–fCNMcorrelation with data-driven models to constrain the degree of magnetic field disorder between phases along the line of sight. We argue that an increased magnetic field disorder in the warm neutral medium (WNM) relative to the CNM best explains the positivep353–fCNMcorrelation in diffuse regions. Modeling the CNM-associated dust column as being maximally polarized, with a polarization fractionpCNM∼ 0.2, we find that the best-fit mean polarization fraction in the WNM-associated dust column is 0.22pCNM. The model further suggests that a significantfCNM-correlated fraction of the non-CNM column (an additional 18.4% of the Himass on average) is also more magnetically ordered, and we speculate that the additional column is associated with the unstable medium. Our results constitute a new large-area constraint on the average relative disorder of magnetic fields between the neutral phases of the interstellar medium, and are consistent with the physical picture of a more magnetically aligned CNM column forming out of a disordered WNM.more » « less
-
Abstract We present rest-frame optical emission-line flux ratio measurements for fivez> 5 galaxies observed by the James Webb Space Telescope Near-Infared Spectrograph (NIRSpec) in the SMACS 0723 Early Release Observations. We add several quality-control and post-processing steps to the NIRSpec pipeline reduction products in order to ensure reliablerelativeflux calibration of emission lines that are closely separated in wavelength, despite the uncertainabsolutespectrophotometry of the current version of the reductions. Compared toz∼ 3 galaxies in the literature, thez> 5 galaxies have similar [Oiii]λ5008/Hβratios, similar [Oiii]λ4364/Hγratios, and higher (∼0.5 dex) [NeIII]λ3870/[OII]λ3728 ratios. We compare the observations to MAPPINGS V photoionization models and find that the measured [NeIII]λ3870/[OII]λ3728, [Oiii]λ4364/Hγ, and [Oiii]λ5008/Hβemission-line ratios are consistent with an interstellar medium (ISM) that has very high ionization ( , units of cm s−1), low metallicity (Z/Z⊙≲ 0.2), and very high pressure ( , units of cm−3). The combination of [Oiii]λ4364/Hγand [Oiii]λ(4960 + 5008)/Hβline ratios indicate very high electron temperatures of , further implying metallicities ofZ/Z⊙≲ 0.2 with the application of low-redshift calibrations for “Te-based” metallicities. These observations represent a tantalizing new view of the physical conditions of the ISM in galaxies at cosmic dawn.more » « less
-
Abstract Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral atz> 7 and largely ionized byz∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volume-averaged neutral fraction of the IGM is either relatively low ( ) or close to unity ( ). In particular, the neutral fraction evolution of the IGM at the critical redshift range ofz= 6–7 is poorly constrained. We present new constraints on atz∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z< 7.09. We derive model-independent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyαand Lyβforests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first model-independent constraints on the IGM neutral hydrogen fraction atz∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits of (1σ), (1σ), and (1σ). The dark pixel fractions atz> 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018.more » « less
An official website of the United States government
