Abstract We present a stringent measurement of the dust-obscured star formation rate density (SFRD) atz= 4–6 from the ASPIRE JWST Cycle-1 medium and ALMA Cycle-9 large program. We obtained JWST/NIRCam grism spectroscopy and ALMA 1.2 mm continuum map along 25 independent quasar sightlines, covering a total survey area of ∼35 arcmin2where we search for dusty star-forming galaxies (DSFGs) atz= 0–7. We identify eight DSFGs in seven fields atz= 4–6 through the detection of Hαor [O iii]λ5008 lines, including fainter lines such as Hβ, [O iii]λ4960, [N ii]λ6585, and [S ii]λλ6718,6733 for six sources. With this spectroscopically complete DSFG sample atz= 4–6 and negligible impact from cosmic variance (shot noise), we measure the infrared luminosity function (IRLF) down toLIR ∼ 2 × 1011L⊙. We find flattening of IRLF atz= 4–6 towards the faint end (power-law slope ). We determine the dust-obscured cosmic SFRD at this epoch to be . This is significantly higher than previous determinations using ALMA data in the Hubble Ultra Deep Field, which is void of DSFGs atz= 4–6 because of strong cosmic variance (shot noise). We conclude that the majority (66% ± 7%) of cosmic star formation atz ∼ 5 is still obscured by dust. We also discuss the uncertainty of SFRD propagated from far-IR spectral energy distribution and IRLF at the bright end, which will need to be resolved with future ALMA and JWST observations.
more »
« less
The Physical Conditions of Emission-line Galaxies at Cosmic Dawn from JWST/NIRSpec Spectroscopy in the SMACS 0723 Early Release Observations
Abstract We present rest-frame optical emission-line flux ratio measurements for fivez> 5 galaxies observed by the James Webb Space Telescope Near-Infared Spectrograph (NIRSpec) in the SMACS 0723 Early Release Observations. We add several quality-control and post-processing steps to the NIRSpec pipeline reduction products in order to ensure reliablerelativeflux calibration of emission lines that are closely separated in wavelength, despite the uncertainabsolutespectrophotometry of the current version of the reductions. Compared toz∼ 3 galaxies in the literature, thez> 5 galaxies have similar [Oiii]λ5008/Hβratios, similar [Oiii]λ4364/Hγratios, and higher (∼0.5 dex) [NeIII]λ3870/[OII]λ3728 ratios. We compare the observations to MAPPINGS V photoionization models and find that the measured [NeIII]λ3870/[OII]λ3728, [Oiii]λ4364/Hγ, and [Oiii]λ5008/Hβemission-line ratios are consistent with an interstellar medium (ISM) that has very high ionization ( , units of cm s−1), low metallicity (Z/Z⊙≲ 0.2), and very high pressure ( , units of cm−3). The combination of [Oiii]λ4364/Hγand [Oiii]λ(4960 + 5008)/Hβline ratios indicate very high electron temperatures of , further implying metallicities ofZ/Z⊙≲ 0.2 with the application of low-redshift calibrations for “Te-based” metallicities. These observations represent a tantalizing new view of the physical conditions of the ISM in galaxies at cosmic dawn.
more »
« less
- Award ID(s):
- 1945546
- PAR ID:
- 10400535
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 945
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 35
- Size(s):
- Article No. 35
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper presents a newly established sample of 103 unique galaxies or galaxy groups at 0.4 ≲z≲ 0.7 from the Cosmic Ultraviolet Baryon Survey (CUBS) for studying the warm-hot circumgalactic medium (CGM) probed by both Oviand Neviiiabsorption. The galaxies and associated neighbors are identified at <1 physical Mpc from the sightlines toward 15 CUBS QSOs atzQSO≳ 0.8. A total of 30 galaxies or galaxy groups exhibit associated Oviλλ1031, 1037 doublet absorption within a line-of-sight velocity interval of ±250 km s−1, while the rest show no trace of Ovito a detection limit of . Meanwhile, only five galaxies or galaxy groups exhibit the Neviiiλλ770, 780 doublet absorption, down to a limiting column density of . These Ovi- and Neviii-bearing halos reside in different galaxy environments with stellar masses ranging from to ≈11.5. The warm-hot CGM around galaxies of different stellar masses and star formation rates exhibits different spatial profiles and kinematics. In particular, star-forming galaxies with show a significant concentration of metal-enriched warm-hot CGM within the virial radius, while massive quiescent galaxies exhibit flatter radial profiles of both column densities and covering fractions. In addition, the velocity dispersion of Oviabsorption is broad withσυ> 40 km s−1for galaxies of within the virial radius, suggesting a more dynamic warm-hot halo around these galaxies. Finally, the warm-hot CGM probed by Oviand Neviiiis suggested to be the dominant phase in sub-L* galaxies with based on their high ionization fractions in the CGM.more » « less
-
Abstract We use Hubble Space Telescope Wide Field Camera 3 G102 and G141 grism spectroscopy to measure rest-frame optical emission-line ratios of 533 galaxies atz∼ 1.5 in the CANDELS LyαEmission at Reionization survey. We compare [Oiii]/Hβversus [Sii]/(Hα+ [Nii]) as an “unVO87” diagram for 461 galaxies and [Oiii]/Hβversus [Neiii]/[Oii] as an “OHNO” diagram for 91 galaxies. The unVO87 diagram does not effectively separate active galactic nuclei (AGN) and [Nev] sources from star-forming galaxies, indicating that the unVO87 properties of star-forming galaxies evolve with redshift and overlap with AGN emission-line signatures atz> 1. The OHNO diagram does effectively separate X-ray AGN and [Nev]-emitting galaxies from the rest of the population. We find that the [Oiii]/Hβline ratios are significantly anticorrelated with stellar mass and significantly correlated with , while [Sii]/(Hα+ [Nii]) is significantly anticorrelated with . Comparison with MAPPINGS V photoionization models indicates that these trends are consistent with lower metallicity and higher ionization in low-mass and high-star formation rate (SFR) galaxies. We do not find evidence for redshift evolution of the emission-line ratios outside of the correlations with mass and SFR. Our results suggest that the OHNO diagram of [Oiii]/Hβversus [Neiii]/[Oii] will be a useful indicator of AGN content and gas conditions in very high-redshift galaxies to be observed by the James Webb Space Telescope.more » « less
-
Abstract We investigate how cosmic web structures affect galaxy quenching in the IllustrisTNG (TNG100) cosmological simulations by reconstructing the cosmic web within each snapshot using the DisPerSE framework. We measure the comoving distance from each galaxy with stellar mass to the nearest node (dnode) and the nearest filament spine (dfil) to study the dependence of both the median specific star formation rate (〈sSFR〉) and the median gas fraction (〈fgas〉) on these distances. We find that the 〈sSFR〉 of galaxies is only dependent on the cosmic web environment atz< 2, with the dependence increasing with time. Atz≤ 0.5, galaxies are quenched atdnode≲ 1 Mpc, and have significantly suppressed star formation atdfil≲ 1 Mpc, trends driven mostly by satellite galaxies. Atz≤ 1, in contrast to the monotonic drop in 〈sSFR〉 of galaxies with decreasingdnodeanddfil, galaxies—both centrals and satellites—experience an upturn in 〈sSFR〉 atdnode≲ 0.2 Mpc. Much of this cosmic web dependence of star formation activity can be explained by an evolution in 〈fgas〉. Our results suggest that in the past ∼10 Gyr, low-mass satellites are quenched by rapid gas stripping in dense environments near nodes and gradual gas starvation in intermediate-density environments near filaments. At earlier times, cosmic web structures efficiently channeled cold gas into most galaxies. State-of-the-art ongoing spectroscopic surveys such as the Sloan Digital Sky Survey and DESI, as well as those planned with the Subaru Prime Focus Spectrograph, JWST, and Roman, are required to test our predictions against observations.more » « less
-
Abstract A measurement of off-shell Higgs boson production in the decay channel is presented. The measurement uses 140 fb−1of proton–proton collisions at TeV collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous result in this decay channel using the same dataset. The data analysis is performed using a neural simulation-based inference method, which builds per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs boson production signal strength in the decay channel at 68% CL is ( ). The evidence for off-shell Higgs boson production using the decay channel has an observed (expected) significance of 2.5σ(1.3σ). The expected result represents a significant improvement relative to that of the previous analysis of the same dataset, which obtained an expected significance of 0.5σ. When combined with the most recent ATLAS measurement in the decay channel, the evidence for off-shell Higgs boson production has an observed (expected) significance of 3.7σ(2.4σ). The off-shell measurements are combined with the measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The observed (expected) value of the Higgs boson width at 68% CL is ( ) MeV.more » « less