ABSTRACT We report the spectroscopic follow-up of 175 lensed quasar candidates selected using Gaia Data Release 2 observations following Paper III of this series. Systems include 86 confirmed lensed quasars and a further 17 likely lensed quasars based on imaging and/or similar spectra. We also confirm 11 projected quasar pairs and 11 physical quasar pairs, while 25 systems are left as unclassified quasar pairs – pairs of quasars at the same redshift, which could be either distinct quasars or potential lensed quasars. Especially interesting objects include eight quadruply imaged quasars of which two have BAL sources, an apparent triple, and a doubly lensed LoBaL quasar. The source redshifts and image separations of these new lenses range between 0.65–3.59 and 0.78–6.23 arcsec, respectively. We compare the known population of lensed quasars to an updated mock catalogue at image separations between 1 and 4 arcsec, showing a very good match at z < 1.5. At z > 1.5, only 47 per cent of the predicted number are known, with 56 per cent of these missing lenses at image separations below 1.5 arcsec. The missing higher redshift, small-separation systems will have fainter lensing galaxies, and are partially explained by the unclassified quasar pairs and likely lenses presented in this work, which require deeper imaging. Of the 11 new reported projected quasar pairs, 5 have impact parameters below 10 kpc, almost tripling the number of such systems, which can probe the innermost regions of quasar host galaxies through absorption studies. We also report four new lensed galaxies discovered through our searches, with source redshifts ranging from 0.62 to 2.79.
more »
« less
A Survey for High-redshift Gravitationally Lensed Quasars and Close Quasar Pairs. I. The Discoveries of an Intermediately Lensed Quasar and a Kiloparsec-scale Quasar Pair at z ∼ 5
Abstract We present the first results from a new survey for high-redshift (z≳ 5) gravitationally lensed quasars and close quasar pairs. We carry out candidate selection based on the colors and shapes of objects in public imaging surveys, then conduct follow-up observations to confirm the nature of high-priority candidates. In this paper, we report the discoveries of J0025–0145 (z= 5.07), which we identify as an intermediately lensed quasar, and J2329–0522 (z= 4.85), which is a kiloparsec-scale close quasar pair. The Hubble Space Telescope (HST) image of J0025–0145 shows a foreground lensing galaxy located 0.″6 away from the quasar. However, J0025–0145 does not exhibit multiple lensed images of the quasar, and we identify J0025–0145 as an intermediate lensing system (a lensing system that is not multiply imaged but has a significant magnification). The spectrum of J0025–0145 implies an extreme Eddington ratio if the quasar luminosity is intrinsic, which could be explained by a large lensing magnification. The HST image of J0025–0145 also indicates a tentative detection of the quasar host galaxy in the rest-frame UV, illustrating the power of lensing magnification and distortion in studies of high-redshift quasar host galaxies. Object J2329–0522 consists of two resolved components with significantly different spectral properties and a lack of lensing galaxy detection under subarcsecond seeing. We identify it as a close quasar pair, which is the highest confirmed kiloparsec-scale quasar pair to date. We also report four lensed quasars and quasar pairs at 2 <z< 4 and discuss possible improvements to our survey strategy.
more »
« less
- Award ID(s):
- 1908284
- PAR ID:
- 10405383
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 165
- Issue:
- 5
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 191
- Size(s):
- Article No. 191
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dual supermassive black holes (SMBHs) at ∼kiloparsec scales are the progenitor population of SMBH mergers and play an important role in understanding the pairing and dynamical evolution of massive black holes in galaxy mergers. Because of the stringent resolution requirement and the apparent rareness of these small-separation pairs, there are scarce observational constraints on this population, with few confirmed dual SMBHs at <10 kpc separations atz> 1. Here we present results from a pilot search for kiloparsec-scale dual quasars selected with Gaia Data release 2 (DR2) astrometry and followed up with Hubble Space Telescope (HST) Wide Field Camera 3 dual-band (F475W and F814W) snapshot imaging. Our targets are quasars primarily selected with the varstrometry technique, i.e., light centroid jitter caused by asynchronous variability from both members in an unresolved quasar pair, supplemented by subarcsecond pairs already resolved by Gaia DR2. We find an overall high fraction of HST-resolved pairs among the varstrometry-selected quasars (unresolved in Gaia DR2), ∼30%–50%, increasing toward high redshift (∼60%–80% atz> 1.5). We discuss the nature of the 45 resolved subarcsecond pairs based on HST and supplementary data. A substantial fraction (∼40%) of these pairs are likely physical quasar pairs or gravitationally lensed quasars. We also discover a triple quasar candidate and a quadruply lensed quasar, which is among the smallest-separation quadruple lenses. These results provide important guidelines to improve varstrometry selection and follow-up confirmation of ~kiloparsec-scale dual SMBHs at high redshift.more » « less
-
Abstract We report Hubble Space Telescope (HST) Wide Field Camera 3 deep IR (F160W) imaging of SDSS J1608+2716. This system, located at a redshift of z = 2.575, was recently reported as a triple-quasar candidate with subarcsecond separations (∼0.″25) based on selection from Gaia astrometry and follow-up Keck adaptive optics–assisted integral field unit spectroscopy. Our new HST deep IR imaging reveals the presence of a fourth point-like component located ∼0.″9 away from the triple system. Additionally, we detect an edge-on disk galaxy located in between the four point sources. The entire system exhibits a characteristic cusp structure in the context of strong gravitational lensing, and the observed image configuration can be successfully reproduced using a lens model based on a singular isothermal ellipsoid mass profile. These findings indicate that this system is a quadruply lensed quasar. Our results highlight the challenges associated with identifying dual/multiple quasars on ∼kiloparsec scales at high redshifts and emphasize the crucial role of deep, high-resolution IR imaging in robustly confirming such systems.more » « less
-
Abstract We report the discovery of a close quasar pair candidate atz= 5.66, J2037–4537. J2037–4537 is resolved into two quasar images at the same redshift in ground-based observations. Follow-up spectroscopy shows significant differences in both the continuum slopes and emission line properties of the two images. The two quasar images have a projected separation of 1.″24 (7.3 kpc atz= 5.66) and a redshift difference of Δz≲ 0.01. High-resolution images taken by the Hubble Space Telescope do not detect the foreground lensing galaxy. The observational features of J2037–4537 strongly disfavor the lensing hypothesis. If J2037–4537 is a physical quasar pair, it indicates a quasar clustering signal of ∼105at a separation of ∼10 proper kpc (pkpc), and gives the first observational constraint on the pair fraction ofz> 5 quasars,fpair(r< 30 pkpc) > 0.3%. The properties of J2037–4537 are consistent with those of merger-triggered quasar pairs in hydrodynamical simulations of galaxy mergers.more » « less
-
Abstract We present a mock catalog of gravitationally-lensed quasars atzqso< 7.5 with simulated images for the Rubin Observatory Legacy Survey of Space and Time (LSST). We adopt recent measurements of quasar-luminosity functions to model the quasar population, and use the CosmoDC2 mock galaxy catalog to model the deflector galaxies, which successfully reproduces the observed galaxy-velocity dispersion functions up tozd∼ 1.5. The mock catalog is highly complete for lensed quasars with Einstein radiusθE> 0.″07 and quasar absolute magnitudeMi< − 20. We estimate that there are ∼103lensed quasars discoverable in current imaging surveys, and LSST will increase this number to ∼ 2.4 × 103. Most of the lensed quasars have image separation Δθ> 0.″5, which will at least be marginally resolved in LSST images with seeing of ∼0.″7. There will be ∼200 quadruply-lensed quasars discoverable in the LSST. The fraction of quad lenses among all discoverable lensed quasars is about ∼10%–15%, and this fraction decreases with survey depth. This mock catalog shows a large diversity in the observational features of lensed quasars, in terms of lensing separation and quasar-to-deflector flux ratio. We discuss possible strategies for a complete search of lensed quasars in the LSST era.more » « less
An official website of the United States government
