skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Searching for continuous Gravitational Waves in the second data release of the International Pulsar Timing Array
ABSTRACT The International Pulsar Timing Array 2nd data release is the combination of data sets from worldwide collaborations. In this study, we search for continuous waves: gravitational wave signals produced by individual supermassive black hole binaries in the local universe. We consider binaries on circular orbits and neglect the evolution of orbital frequency over the observational span. We find no evidence for such signals and set sky averaged 95 per cent upper limits on their amplitude h95. The most sensitive frequency is 10 nHz with h95 = 9.1 × 10−15. We achieved the best upper limit to date at low and high frequencies of the PTA band thanks to improved effective cadence of observations. In our analysis, we have taken into account the recently discovered common red noise process, which has an impact at low frequencies. We also find that the peculiar noise features present in some pulsars data must be taken into account to reduce the false alarm. We show that using custom noise models is essential in searching for continuous gravitational wave signals and setting the upper limit.  more » « less
Award ID(s):
1847938 2106552 2007993 2020265 2202388
PAR ID:
10405595
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
521
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 5077-5086
Size(s):
p. 5077-5086
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pulsar timing array collaborations, such as the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), are seeking to detect nanohertz gravitational waves emitted by supermassive black hole binaries formed in the aftermath of galaxy mergers. We have searched for continuous waves from individual circular supermassive black hole binaries using NANOGrav’s recent 12.5 yr data set. We created new methods to accurately model the uncertainties on pulsar distances in our analysis, and we implemented new techniques to account for a common red-noise process in pulsar timing array data sets while searching for deterministic gravitational wave signals, including continuous waves. As we found no evidence for continuous waves in our data, we placed 95% upper limits on the strain amplitude of continuous waves emitted by these sources. At our most sensitive frequency of 7.65 nHz, we placed a sky-averaged limit ofh0< (6.82 ± 0.35) × 10−15, andh0< (2.66 ± 0.15) × 10−15in our most sensitive sky location. Finally, we placed a multimessenger limit of < ( 1.41 ± 0.02 ) × 10 9 M on the chirp mass of the supermassive black hole binary candidate 3C 66B. 
    more » « less
  2. Abstract We present results of a search for periodic gravitational wave signals with frequencies between 20 and 400 Hz from the neutron star in the supernova remnant G347.3-0.5 using LIGO O2 public data. The search is deployed on the volunteer computing project Einstein@Home, with thousands of participants donating compute cycles to make this endeavour possible. We find no significant signal candidate and set the most constraining upper limits to date on the amplitude of gravitational wave signals from the target, corresponding to deformations below 10 −6 in a large part of the band. At the frequency of best strain sensitivity, near 166 Hz, we set 90% confidence upper limits on the gravitational wave intrinsic amplitude of h 0 90 % ≈ 7.0 × 10 − 26 . Over most of the frequency range our upper limits are a factor of 20 smaller than the indirect age-based upper limit. 
    more » « less
  3. Abstract Evidence for a low-frequency stochastic gravitational-wave background has recently been reported based on analyses of pulsar timing array data. The most likely source of such a background is a population of supermassive black hole binaries, the loudest of which may be individually detected in these data sets. Here we present the search for individual supermassive black hole binaries in the NANOGrav 15 yr data set. We introduce several new techniques, which enhance the efficiency and modeling accuracy of the analysis. The search uncovered weak evidence for two candidate signals, one with a gravitational-wave frequency of ∼4 nHz, and another at ∼170 nHz. The significance of the low-frequency candidate was greatly diminished when Hellings–Downs correlations were included in the background model. The high-frequency candidate was discounted due to the lack of a plausible host galaxy, the unlikely astrophysical prior odds of finding such a source, and since most of its support comes from a single pulsar with a commensurate binary period. Finding no compelling evidence for signals from individual binary systems, we place upper limits on the strain amplitude of gravitational waves emitted by such systems. At our most sensitive frequency of 6 nHz, we place a sky-averaged 95% upper limit of 8 × 10 −15 on the strain amplitude. We also calculate an exclusion volume and a corresponding effective radius, within which we can rule out the presence of black hole binaries emitting at a given frequency. 
    more » « less
  4. Abstract We perform a search for continuous nearly monochromatic gravitational waves from the central compact objects associated with the supernova remnants Vela Jr. and G347.3. Over 1018different waveforms are considered, covering signal frequencies between 20 and 1300 Hz (20 and 400 Hz) for G347.3-0.5 (Vela Jr.) and a very broad range of frequency derivatives. The data set used for this first search is from the second observing run of LIGO (O2). Thousands of volunteers donating compute cycles through the computing project Einstein@Home have made this endeavor possible. Following the Einstein@Home search, we perform multistage follow-ups of over 5 million waveforms. The threshold for selecting candidates from the Einstein@Home search is such that, after the multistage follow-up, we do not expect any surviving candidate due to noise. The very last stage uses a different data set, namely, the LIGO O3 data. We find no significant signal candidate for either targets. Based on this null result, for G347.3-0.5, we set the most constraining upper limits to date on the amplitude of gravitational-wave signals, corresponding to deformations below 10−6in a large part of the search band. At the frequency of best strain sensitivity, near 161 Hz, we set 90% confidence upper limits on the gravitational-wave intrinsic amplitude of h 0 90 % 6.2 × 10 26 . Over most of the frequency range, our upper limits are a factor of 10 smaller than the indirect age-based upper limit. For Vela Jr., near 163 Hz, we set h 0 90 % 6.4 × 10 26 . Over most of the frequency range, our upper limits are a factor of 15 smaller than the indirect age-based upper limit. The Vela Jr. upper limits presented here are slightly less constraining than the most recent upper limits of R. Abbott et al., but they apply to a broader set of signals. 
    more » « less
  5. Abstract We report on a new search for continuous gravitational waves from NS 1987A, the neutron star born in SN 1987A, using open data from Advanced LIGO and Virgo’s third observing run (O3). The search covered frequencies from 35–1050 Hz, more than 5 times the band of the only previous gravitational-wave search to constrain NS 1987A. Our search used an improved code and coherently integrated from 5.10 to 14.85 days depending on frequency. No astrophysical signals were detected. By expanding the frequency range and using O3 data, this search improved on strain upper limits from the previous search and was sensitive at the highest frequencies to ellipticities of 1.6 × 10−5andr-mode amplitudes of 4.4 × 10−4, both an order of magnitude improvement over the previous search and both well within the range of theoretical predictions. 
    more » « less