skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2202388

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We examine the effect of supermassive black hole (SMBH) mass scaling relation choice on the inferred SMBH mass population since redshift z ∼ 3. To make robust predictions for the gravitational wave background (GWB), we must have a solid understanding of the underlying SMBH demographics. Using the SDSS and 3D-HST + CANDELS surveys for 0 < z < 3, we evaluate the inferred SMBH masses from two SMBH–galaxy scaling relations: MBH–Mbulge and MBH–σ. Our SMBH mass functions come directly from stellar mass measurements for MBH–Mbulge, and indirectly from stellar mass and galaxy radius measurements along with the galaxy mass fundamental plane for MBH–σ. We find that there is a substantial difference in predictions especially for z > 1, and this difference increases out to z = 3. In particular, we find that using velocity dispersion predicts a greater number of SMBHs with masses greater than 109 M⊙. The GWB that pulsar timing arrays find evidence for is higher in amplitude than expected from GWB predictions which rely on high-redshift extrapolations of local SMBH mass–galaxy scaling relations. The difference in SMBH demographics resulting from different scaling relations may be the origin for the mismatch between the signal amplitude and predictions. Generally, our results suggest that a deeper understanding of the potential redshift evolution of these relations is needed if we are to draw significant insight from their predictions at z > 1. 
    more » « less
  2. Abstract Supermassive black holes (SMBHs) reside at the center of every massive galaxy in the local universe with masses that closely correlate with observations of their host galaxy, implying a connected evolutionary history. The population of binary SMBHs, which form following galaxy mergers, is expected to produce a gravitational-wave background (GWB) detectable by pulsar timing arrays (PTAs). PTAs are starting to see hints of what may be a GWB, and the amplitude of the emerging signal is toward the higher end of model predictions. Simulated populations of binary SMBHs can be constructed from observations of galaxies and are used to make predictions about the nature of the GWB. The greatest source of uncertainty in these observation-based models comes from the inference of the SMBH mass function, which is derived from observed host galaxy properties. In this paper, I undertake a new approach for inferring the SMBH mass function, starting from a velocity dispersion function rather than a galaxy stellar mass function. I argue that this method allows for a more direct inference by relying on a larger suite of individual galaxy observations as well as relying on a more “fundamental” SMBH mass relation. I find that the resulting binary SMBH population contains more massive systems at higher redshifts than previous models. Additionally, I explore the implications for the detection of individually resolvable sources in PTA data. 
    more » « less
  3. Abstract Analyses of pulsar timing data have provided evidence for a stochastic gravitational wave background in the nanohertz frequency band. The most plausible source of this background is the superposition of signals from millions of supermassive black hole binaries. The standard statistical techniques used to search for this background and assess its significance make several simplifying assumptions, namely (i) Gaussianity, (ii) isotropy, and most often, (iii) a power-law spectrum. However, a stochastic background from a finite collection of binaries does not exactly satisfy any of these assumptions. To understand the effect of these assumptions, we test standard analysis techniques on a large collection of realistic simulated data sets. The data-set length, observing schedule, and noise levels were chosen to emulate the NANOGrav 15 yr data set. Simulated signals from millions of binaries drawn from models based on the Illustris cosmological hydrodynamical simulation were added to the data. We find that the standard statistical methods perform remarkably well on these simulated data sets, even though their fundamental assumptions are not strictly met. They are able to achieve a confident detection of the background. However, even for a fixed set of astrophysical parameters, different realizations of the universe result in a large variance in the significance and recovered parameters of the background. We also find that the presence of loud individual binaries can bias the spectral recovery of the background if we do not account for them. 
    more » « less
  4. ABSTRACT It is difficult to accurately identify galaxy mergers and it is an even larger challenge to classify them by their mass ratio or merger stage. In previous work we used a suite of simulated mergers to create a classification technique that uses linear discriminant analysis to identify major and minor mergers. Here, we apply this technique to 1.3 million galaxies from the SDSS DR16 photometric catalogue and present the probability that each galaxy is a major or minor merger, splitting the classifications by merger stages (early, late, post-coalescence). We present publicly available imaging predictor values and all of the above classifications for one of the largest-yet samples of galaxies. We measure the major and minor merger fraction (fmerg) and build a mass-complete sample of galaxies, which we bin as a function of stellar mass and redshift. For the major mergers, we find a positive slope of fmerg with stellar mass and negative slope of fmerg with redshift between stellar masses of 10.5 < M*(log M⊙) < 11.6 and redshifts of 0.03 < z < 0.19. We are able to reproduce an artificial positive slope of the major merger fraction with redshift when we do not bin for mass or craft a complete sample, demonstrating the importance of mass completeness and mass binning. We determine that the positive trend of the major merger fraction with stellar mass is consistent with a hierarchical assembly scenario. The negative trend with redshift requires that an additional assembly mechanism, such as baryonic feedback, dominates in the local Universe. 
    more » « less
  5. Abstract The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has reported evidence for the presence of an isotropic nanohertz gravitational-wave background (GWB) in its 15 yr data set. However, if the GWB is produced by a population of inspiraling supermassive black hole binary (SMBHB) systems, then the background is predicted to be anisotropic, depending on the distribution of these systems in the local Universe and the statistical properties of the SMBHB population. In this work, we search for anisotropy in the GWB using multiple methods and bases to describe the distribution of the GWB power on the sky. We do not find significant evidence of anisotropy. By modeling the angular power distribution as a sum over spherical harmonics (where the coefficients are not bound to always generate positive power everywhere), we find that the Bayesian 95% upper limit on the level of dipole anisotropy is (Cl=1/Cl=0) < 27%. This is similar to the upper limit derived under the constraint of positive power everywhere, indicating that the dipole may be close to the data-informed regime. By contrast, the constraints on anisotropy at higher spherical-harmonic multipoles are strongly prior dominated. We also derive conservative estimates on the anisotropy expected from a random distribution of SMBHB systems using astrophysical simulations conditioned on the isotropic GWB inferred in the 15 yr data set and show that this data set has sufficient sensitivity to probe a large fraction of the predicted level of anisotropy. We end by highlighting the opportunities and challenges in searching for anisotropy in pulsar timing array data. 
    more » « less
  6. Abstract Pulsar timing arrays (PTAs) are galactic-scale gravitational wave (GW) detectors. Each individual arm, composed of a millisecond pulsar, a radio telescope, and a kiloparsecs-long path, differs in its properties but, in aggregate, can be used to extract low-frequency GW signals. We present a noise and sensitivity analysis to accompany the NANOGrav 15 yr data release and associated papers, along with an in-depth introduction to PTA noise models. As a first step in our analysis, we characterize each individual pulsar data set with three types of white-noise parameters and two red-noise parameters. These parameters, along with the timing model and, particularly, a piecewise-constant model for the time-variable dispersion measure, determine the sensitivity curve over the low-frequency GW band we are searching. We tabulate information for all of the pulsars in this data release and present some representative sensitivity curves. We then combine the individual pulsar sensitivities using a signal-to-noise ratio statistic to calculate the global sensitivity of the PTA to a stochastic background of GWs, obtaining a minimum noise characteristic strain of 7 × 10−15at 5 nHz. A power-law-integrated analysis shows rough agreement with the amplitudes recovered in NANOGrav’s 15 yr GW background analysis. While our phenomenological noise model does not model all known physical effects explicitly, it provides an accurate characterization of the noise in the data while preserving sensitivity to multiple classes of GW signals. 
    more » « less
  7. Abstract The 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) shows positive evidence for the presence of a low-frequency gravitational-wave (GW) background. In this paper, we investigate potential cosmological interpretations of this signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, cosmic strings, and domain walls. We find that, with the exception of stable cosmic strings of field theory origin, all these models can reproduce the observed signal. When compared to the standard interpretation in terms of inspiraling supermassive black hole binaries (SMBHBs), many cosmological models seem to provide a better fit resulting in Bayes factors in the range from 10 to 100. However, these results strongly depend on modeling assumptions about the cosmic SMBHB population and, at this stage, should not be regarded as evidence for new physics. Furthermore, we identify excluded parameter regions where the predicted GW signal from cosmological sources significantly exceeds the NANOGrav signal. These parameter constraints are independent of the origin of the NANOGrav signal and illustrate how pulsar timing data provide a new way to constrain the parameter space of these models. Finally, we search for deterministic signals produced by models of ultralight dark matter (ULDM) and dark matter substructures in the Milky Way. We find no evidence for either of these signals and thus report updated constraints on these models. In the case of ULDM, these constraints outperform torsion balance and atomic clock constraints for ULDM coupled to electrons, muons, or gluons. 
    more » « less
  8. ABSTRACT The International Pulsar Timing Array 2nd data release is the combination of data sets from worldwide collaborations. In this study, we search for continuous waves: gravitational wave signals produced by individual supermassive black hole binaries in the local universe. We consider binaries on circular orbits and neglect the evolution of orbital frequency over the observational span. We find no evidence for such signals and set sky averaged 95 per cent upper limits on their amplitude h95. The most sensitive frequency is 10 nHz with h95 = 9.1 × 10−15. We achieved the best upper limit to date at low and high frequencies of the PTA band thanks to improved effective cadence of observations. In our analysis, we have taken into account the recently discovered common red noise process, which has an impact at low frequencies. We also find that the peculiar noise features present in some pulsars data must be taken into account to reduce the false alarm. We show that using custom noise models is essential in searching for continuous gravitational wave signals and setting the upper limit. 
    more » « less
  9. Abstract The NANOGrav 15 yr data set shows evidence for the presence of a low-frequency gravitational-wave background (GWB). While many physical processes can source such low-frequency gravitational waves, here we analyze the signal as coming from a population of supermassive black hole (SMBH) binaries distributed throughout the Universe. We show that astrophysically motivated models of SMBH binary populations are able to reproduce both the amplitude and shape of the observed low-frequency gravitational-wave spectrum. While multiple model variations are able to reproduce the GWB spectrum at our current measurement precision, our results highlight the importance of accurately modeling binary evolution for producing realistic GWB spectra. Additionally, while reasonable parameters are able to reproduce the 15 yr observations, the implied GWB amplitude necessitates either a large number of parameters to be at the edges of expected values or a small number of parameters to be notably different from standard expectations. While we are not yet able to definitively establish the origin of the inferred GWB signal, the consistency of the signal with astrophysical expectations offers a tantalizing prospect for confirming that SMBH binaries are able to form, reach subparsec separations, and eventually coalesce. As the significance grows over time, higher-order features of the GWB spectrum will definitively determine the nature of the GWB and allow for novel constraints on SMBH populations. 
    more » « less
  10. Abstract Evidence for a low-frequency stochastic gravitational-wave background has recently been reported based on analyses of pulsar timing array data. The most likely source of such a background is a population of supermassive black hole binaries, the loudest of which may be individually detected in these data sets. Here we present the search for individual supermassive black hole binaries in the NANOGrav 15 yr data set. We introduce several new techniques, which enhance the efficiency and modeling accuracy of the analysis. The search uncovered weak evidence for two candidate signals, one with a gravitational-wave frequency of ∼4 nHz, and another at ∼170 nHz. The significance of the low-frequency candidate was greatly diminished when Hellings–Downs correlations were included in the background model. The high-frequency candidate was discounted due to the lack of a plausible host galaxy, the unlikely astrophysical prior odds of finding such a source, and since most of its support comes from a single pulsar with a commensurate binary period. Finding no compelling evidence for signals from individual binary systems, we place upper limits on the strain amplitude of gravitational waves emitted by such systems. At our most sensitive frequency of 6 nHz, we place a sky-averaged 95% upper limit of 8 × 10 −15 on the strain amplitude. We also calculate an exclusion volume and a corresponding effective radius, within which we can rule out the presence of black hole binaries emitting at a given frequency. 
    more » « less