Freehand sketching equips engineers to represent ideas rapidly in the design process, but most engineering curriculums fall short of equipping students with adequate sketching skills. This paper is focused on methods to improve engineers’ sketching skill through type of instruction, length of instruction, and delivery of and feedback for assignments using Sketchtivity, an intelligent sketch-tutoring software. We answer several key questions for providing better sketching education for engineers. Does perspective training improve freehand drawing ability? Can an intelligent tutoring software improve education outcomes? And how much sketching instruction is necessary for engineers? Analyzing the changes in sketching skill from pre- to post-sketching instruction between different instruction types (n = 116), we found that perspective sketching instruction significantly improved freehand sketching ability compared to traditional engineering sketching methods. When comparing pre to post sketching skill of students using Sketchtivity (n = 135), there was no significant difference in improvement between students using the intelligent tutoring software and those that exclusively practiced on paper – both groups improved equally. However, completing sketching tasks on tablets did not hinder students’ skill development even when measured on paper. Future work will more directly explore the influence of Sketchtivity on sketching skill development. Additionally, we found that five weeks of sketching instruction greatly improves sketching skill compared to only three weeks of instruction (n = 108), but both approaches significantly improve sketching self-efficacy. These outcomes support more extensive sketching instruction in engineering classrooms, and changes in instruction type to promote more freehand sketching skills.
more »
« less
Improving Engineering Sketching Education Through Perspective Techniques and an AI-Based Tutoring Platform
Freehand sketching equips engineers to rapidly represent ideas in the design process, but most engineering curriculums fall short of equipping students with adequate sketching skills. This paper is focused on methods to improve engineers’ sketching skill through type of instruction, length of instruction, and delivery of and feedback for assignments using Sketchtivity, an intelligent sketch-tutoring software. We answer several key questions for providing better sketching education for engineers. Does perspective training improve freehand drawing ability? Can an intelligent tutoring software improve education outcomes? And how much sketching instruction is necessary for engineers? Analyzing the changes in sketching skill from pre- to post-sketching instruction between different instruction types (n = 116), we found that perspective sketching instruction significantly improved freehand sketching ability compared to traditional engineering sketching methods. When comparing pre to post sketching skill of students using Sketchtivity (n = 135), there was no significant difference in improvement between students using the intelligent tutoring software and those that exclusively practiced on paper – both groups improved equally. However, completing sketching tasks on tablets did not hinder students’ skill development even when measured on paper. Future work will more directly explore the influence of Sketchtivity on sketching skill development. Additionally, we found that five weeks of sketching instruction greatly improves sketching skill compared to only three weeks of instruction (n = 108), but both approaches significantly improve sketching self-efficacy. These outcomes support more extensive sketching instruction in engineering classrooms, and changes in instruction type to promote more freehand sketching skills.
more »
« less
- Award ID(s):
- 2013612
- PAR ID:
- 10405700
- Date Published:
- Journal Name:
- International journal of engineering education
- Volume:
- 38
- Issue:
- 6
- ISSN:
- 0949-149X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This Research Work In Progress Paper examines empirical evidence on the impacts of feedback from an intelligent tutoring software on sketching skill development. Sketching is a vital skill for engineering design, but sketching is only taught limitedly in engineering education. Teaching sketching usually involves one-on-one feedback which limits its application in large classrooms. To meet the demands of feedback for sketching instruction, SketchTivity was developed as an intelligent tutoring software. SketchTivity provides immediate personalized feedback on sketching freehand practice. The current study examines the effectiveness of the feedback of SketchTivity by comparing students practicing with the feedback and without. Students were evaluated on their motivation for practicing sketching, the development of their skills, and their perceptions of the software. This work in progress paper examines preliminary analysis in all three of these areas.more » « less
-
Freehand sketching is a powerful skill in engineering design [1, 2]. Freehand sketching empowers designers in the early stages of design to express ideas, communicate with stakeholders, and evaluate concepts at a rapid pace. However, teaching sketching in engineering education poses unique challenges for the classroom. Sketching in other domains is often taught in studio-style courses where instructors can provide personalized feedback on technique. This type of feedback is not possible in typical large entry-level engineering graphics courses. To address this problem, Sketchtivity was developed as an intelligent tutoring software to aid instructors in providing feedback on sketching. Using a tablet and smart pen, learners receive real-time personalized feedback on sketching practice. The main goals of this project are to improve sketching instruction methods, understand the educational efficacy of Sketchtivity, and work towards improving the feedback and content of Sketchtivity.more » « less
-
Perspective sketching is a skill that is required for a variety of jobs including, but not limited to, architectural design, graphic design, and engineering. Sketching however, is a difficult skill to grasp for people early and can take a while to learn. Recently, there have been many intelligent tutoring systems (ITSs) designed to help improve people’s drawing skills. The feedback system for the perspective drawing lessons in SketchTivity, one such ITS, is currently limited to smoothness, speed, and accuracy of the lines. Our team plans to improve upon this feedback system so that the feedback provided to a user is now more nuanced as well as more actionable to reaffirm future learning. To evaluate our system we will conduct a user study with 40 students that involves going through several sketching lessons and then sketching a street corner in 2-D perspective. We plan to run a between-subjects user study with our participants to determine if our adjustment has any effect on the improvement of sketching skills and the usability of the application. We hope to determine that providing the user with data for their smoothness, speed, and accuracy after four sketching prompts can cause an overall improvement in the students’ scores in comparison to at the end of their sketching session. The algorithm that we created to identify a student’s potential issue we hope will be able to provide accurate, actionable feedback in most situations. The visual alterations we made to SketchTivity we expect to have a positive impact on the perspective feedback system and alter the students sketching performance. In future iterations the algorithm should be further refined and the data collected from the students sketches should be further developed to provide more data to create more actionable recommendations for improved sketching performance and retention.more » « less
-
Spatial visualization is the cognitive ability of mentally representing and manipulating two-dimensional and three-dimensional figures. This is a learnable cognitive skill that has been correlated with increased GPA’s and retention in science, technology, engineering, and math (S TEM) disciplines [ Sorby, 2009]. Traditional spatial visualization training includes freehand sketching assignments, which require human grading. A spatial visualization training application (app) was developed in which students freehand sketch on a touchscreen and an automatic grading algorithm provides immediate feedback. In spring 2014, the App was used with iPads in a one-unit spatial visualization course where students took pre and post spatial visualization assessment tests. In 2014, 46% of the students who scored low on the pre-assessment had a significant improvement of 10% or more on the post-assessment. This paper describes how the App was modified to increase student gains: feedback to the user was changed to motivate increased persistence; new assignments were developed, taking advantage of color and cues that are not present in traditional paper based sketching assignments; and assignments were modified to address common errors. The course was taught with the new user interface in 2017, during which 82% of incoming students with low spatial skills showed significant improvement. The increase from 46% to 82% is attributed to the capability of pen and touch technology to be adapted effectively for educational purposes.more » « less
An official website of the United States government

