skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Learning of GNSS Acquisition
Signal acquisition is a crucial step in Global Navigation Satellite System (GNSS) receivers, which is typically solved by maximizing the so-called Cross-Ambiguity Function (CAF) as a hypothesis testing problem. This article proposes to use deep learning models to perform such acquisition, whereby the CAF is fed to a data-driven classifier that outputs binary class posteriors. The class posteriors are used to compute a Bayesian hypothesis test to statistically decide the presence or absence of a GNSS signal. The versatility and computational affordability of the proposed method are addressed by splitting the CAF into smaller overlapping sections, which are fed to a bank of parallel classifiers whose probabilistic results are optimally fused to provide a so-called probability ratio map from which acquisition is decided. Additionally, the article shows how noncoherent integration schemes are enabled through optimal data fusion, with the goal of increasing the resulting classifier accuracy. The article provides simulation results showing that the proposed data-driven method outperforms current CAF maximization strategies, enabling enhanced acquisition at medium-to-high carrier-to-noise density ratios.  more » « less
Award ID(s):
1845833
PAR ID:
10405729
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sensors
Volume:
23
Issue:
3
ISSN:
1424-8220
Page Range / eLocation ID:
1566
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Global Navigation Satellite System (GNSS) is pervasively used in position, navigation, and timing (PNT) applications. As a consequence, important assets have become vulnerable to intentional attacks on GNSS, where of particular relevance is spoofing transmissions that aim at superseding legitimate signals with forged ones in order to control a receiver’s PNT computations. Detecting such attacks is therefore crucial, and this article proposes to employ an algorithm based on deep learning to achieve the task. A data-driven classifier is considered that has two components: a deep learning model that leverages parallelization to reduce its computational complexity and a clustering algorithm that estimates the number and parameters of the spoofing signals. Based on the experimental results, it can be concluded that the proposed scheme exhibits superior performance compared to the existing solutions, especially under moderate-to-high signal-to-noise ratios. 
    more » « less
  2. Data-driven approaches to identify geophysical signals have proven beneficial in high dimensional environments where model-driven methods fall short. GNSS offers a source of unsaturated ground motion observations that are the data currency of ground motion forecasting and rapid seismic hazard assessment and alerting. However, these GNSS-sourced signals are superposed onto hardware-, location- and time-dependent noise signatures influenced by the Earth’s atmosphere, low-cost or spaceborne oscillators, and complex radio frequency environments. Eschewing heuristic or physics based models for a data-driven approach in this context is a step forward in autonomous signal discrimination. However, the performance of a data-driven approach depends upon substantial representative samples with accurate classifications, and more complex algorithm architectures for deeper scientific insights compound this need. The existing catalogs of high-rate (≥1Hz) GNSS ground motions are relatively limited. In this work, we model and evaluate the probabilistic noise of GNSS velocity measurements over a hemispheric network. We generate stochastic noise time series to augment transferred low-noise strong motion signals from within 70 kilometers of strong events (≥ MW 5.0) from an existing inertial catalog. We leverage known signal and noise information to assess feature extraction strategies and quantify augmentation benefits. We find a classifier model trained on this expanded pseudo-synthetic catalog improves generalization compared to a model trained solely on a real-GNSS velocity catalog, and offers a framework for future enhanced data driven approaches. 
    more » « less
  3. The use of carrier phase data is the main driver for high-precision Global Navigation Satellite Systems (GNSS) positioning solutions, such as Real-Time Kinematic (RTK). However, carrier phase observations are ambiguous by an unknown number of cycles, and their use in RTK relies on the process of mapping real-valued ambiguities to integer ones, so-called Integer Ambiguity Resolution (IAR). The main goal of IAR is to enhance the position solution by virtue of its correlation with the estimated integer ambiguities. With the deployment of new GNSS constellations and frequencies, a large number of observations is available. While this is generally positive, positioning in medium and long baselines is challenging due to the atmospheric residuals. In this context, the process of solving the complete set of ambiguities, so-called Full Ambiguity Resolution (FAR), is limiting and may lead to a decreased availability of precise positioning. Alternatively, Partial Ambiguity Resolution (PAR) relaxes the condition of estimating the complete vector of ambiguities and, instead, finds a subset of them to maximize the availability. This article reviews the state-of-the-art PAR schemes, addresses the analytical performance of a PAR estimator following a generalization of the Cramér–Rao Bound (CRB) for the RTK problem, and introduces Precision-Driven PAR (PD-PAR). The latter constitutes a new PAR scheme which employs the formal precision of the (potentially fixed) positioning solution as selection criteria for the subset of ambiguities to fix. Numerical simulations are used to showcase the performance of conventional FAR and FAR approaches, and the proposed PD-PAR against the generalized CRB associated with PAR problems. Real-data experimental analysis for a medium baseline complements the synthetic scenario. The results demonstrate that (i) the generalization for the RTK CRB constitutes a valid lower bound to assess the asymptotic behavior of PAR estimators, and (ii) the proposed PD-PAR technique outperforms existing FAR and PAR solutions as a non-recursive estimator for medium and long baselines. 
    more » « less
  4. null (Ed.)
    Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder which is characterized by impaired communication, and limited social interactions. The shortcomings of current clinical approaches which are based exclusively on behavioral observation of symptomology, and poor understanding of the neurological mechanisms underlying ASD necessitates the identification of new biomarkers that can aid in study of brain development, and functioning, and can lead to accurate and early detection of ASD. In this paper, we developed a deep-learning model called ASD-SAENet for classifying patients with ASD from typical control subjects using fMRI data. We designed and implemented a sparse autoencoder (SAE) which results in optimized extraction of features that can be used for classification. These features are then fed into a deep neural network (DNN) which results in superior classification of fMRI brain scans more prone to ASD. Our proposed model is trained to optimize the classifier while improving extracted features based on both reconstructed data error and the classifier error. We evaluated our proposed deep-learning model using publicly available Autism Brain Imaging Data Exchange (ABIDE) dataset collected from 17 different research centers, and include more than 1,035 subjects. Our extensive experimentation demonstrate that ASD-SAENet exhibits comparable accuracy (70.8%), and superior specificity (79.1%) for the whole dataset as compared to other methods. Further, our experiments demonstrate superior results as compared to other state-of-the-art methods on 12 out of the 17 imaging centers exhibiting superior generalizability across different data acquisition sites and protocols. The implemented code is available on GitHub portal of our lab at: https://github.com/pcdslab/ASD-SAENet . 
    more » « less
  5. Polymerase chain reaction (PCR) has long been the mainstay in genetic sequencing and identification. Irrespective of whether short read or long read technologies are adopted, PCR methods are generally time consuming and expensive. Recently, an all-electronic approach, the so-called Single Molecule Break Junction (SMBJ) method, has been proposed as a possible alternative to PCR. In this article, we evaluate the performance of four different classifier models on the current signatures of ten short strand sequences, including a pair that differs by a single mismatch. We find that a gradient boosted tree classifier model achieves impressive accuracies, ranging from approximately 96% for molecules differing by a single mismatch to 99.5% otherwise. 
    more » « less