skip to main content


Title: Comparison of far electric field waveforms produced by rocket-triggered lightning strokes and subsequent strokes in natural lightning
Award ID(s):
2055178
NSF-PAR ID:
10405770
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Electric Power Systems Research
Volume:
213
Issue:
C
ISSN:
0378-7796
Page Range / eLocation ID:
108784
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study reports on spectroscopy results from a high‐speed optical spectrograph of two naturally occurring lightning return strokes. The two strokes occurred near Melbourne, FL and were from two separate flashes that were about 10 min apart and had National Lightning Detection Network (NLDN) peak currents of −19 and −63 kA. The larger peak current stroke was from a dart leader and was the last stroke in a 5 return stroke flash, while the −19 kA stroke originated from a stepped leader and was the only stroke in that flash. From the flash spectra, the return stroke channel temperature was calculated using the neutral lines of 715.7 nm (OI) and 777.4 nm (OI). In addition to the use of the neutral emission lines, the use of novel instrumentation and image processing techniques allowed the temperature to be calculated for nearly the entire visible channel (several km) and for long durations (several hundred μs). This enables temperature estimates on an unprecedented spatial and temporal scale, which show that the vertical temperature profile is not uniform across the channel. The lower altitudes are significantly hotter than higher altitudes near the time of the return stroke, with temperature gradients along the channel as large as 12,000 K/km. The rate of cooling of the channel is also initially 3–4 times larger at lower altitudes in comparison with the segments at higher altitudes. The stroke with the larger peak current shows larger maximum temperatures, larger temperature gradients along the channel, and also cools quicker.

     
    more » « less
  2. Abstract

    Previous studies have shown that subsequent leaders in positive cloud‐to‐ground lightning (+CG) flashes rarely traverse pre‐existing channels to ground. In this paper, we present evidence that this actually can be common, at least for some thunderstorms. Observations of +CG flashes in a supercell storm in Argentina by Córdoba Argentina Marx Meter Array (CAMMA) are presented, in which 54 (64%) of 84 multiple‐stroke +CG flashes had subsequent leaders following a pre‐existing channel to ground. These subsequent positive leaders are found to behave similarly to their negative counterparts, including propagation speeds along pre‐existing channels with a median of 8 × 106 m/s, which is comparable to that of negative dart leaders. Two representative multiple‐stroke +CG flashes are presented and discussed in detail. The observations reported herein call for an update to the traditional explanation of the disparity between positive and negative lightning.

     
    more » « less