Abstract The dissonant development of positive and negative lightning leaders is a central question in atmospheric electricity. It is also the likely root cause of other reported asymmetries between positive and negative lightning flashes, including the ones regarding: stroke multiplicity, recoil activity, leader velocities, and emission of energetic radiation. In an effort to contrast lightning leaders of different polarities, we highlight the staggering differences between two rocket‐triggered lightning flashes. The flash beginning with upward positive leaders exhibits an initial continuous current stage followed by multiple sequences of dart leaders and return strokes. On the other, in its opposite‐polarity counterpart, the upward development of negative leaders is by itself the entire flash. As a result, the flash with negative leaders is faster, briefer, transfers less charge to the ground, has lower currents, and smaller spatial extent. We conclude by presenting a discussion on the three fundamental leader propagation modes. 
                        more » 
                        « less   
                    
                            
                            Multiple Strokes Along the Same Channel to Ground in Positive Lightning Produced by a Supercell
                        
                    
    
            Abstract Previous studies have shown that subsequent leaders in positive cloud‐to‐ground lightning (+CG) flashes rarely traverse pre‐existing channels to ground. In this paper, we present evidence that this actually can be common, at least for some thunderstorms. Observations of +CG flashes in a supercell storm in Argentina by Córdoba Argentina Marx Meter Array (CAMMA) are presented, in which 54 (64%) of 84 multiple‐stroke +CG flashes had subsequent leaders following a pre‐existing channel to ground. These subsequent positive leaders are found to behave similarly to their negative counterparts, including propagation speeds along pre‐existing channels with a median of 8 × 106 m/s, which is comparable to that of negative dart leaders. Two representative multiple‐stroke +CG flashes are presented and discussed in detail. The observations reported herein call for an update to the traditional explanation of the disparity between positive and negative lightning. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10377257
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 23
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract High‐speed video and electric field change data were used to analyze the initiation and propagation of four predominantly vertical bidirectional leaders making connection to a predominantly horizontal channel previously formed aloft. The four bidirectional leaders sequentially developed along the same path and served to form a positive branch of the horizontal in‐cloud channel, which became a downward positive leader producing a 135‐kA positive cloud‐to‐ground (+CG) return stroke. The positive (lower) end of each bidirectional leader elongated abruptly at the time of connection of the negative (upper) end to the pre‐existing channel aloft. Thirty‐six negative streamer‐like filaments (resembling recently reported “needles”) extended sideways over ∼110 to 740 m from the pre‐existing horizontal channel at speeds of ∼0.5 to 1.9 × 107 m/s, in response to the injection of negative charge associated with the +CG.more » « less
- 
            Abstract A positive cloud‐to‐ground (+CG) lightning flash containing a single stroke with a peak current of approximately +310 kA followed by a long continuing current triggered seven upward lightning flashes from tall structures. The flashes were observed on 4 June 2016 at the Tall Object Lightning Observatory in Guangzhou, Guangdong Province, China. The optical and electric field characteristics of these flashes were analyzed using synchronized two‐station data from two high‐speed video cameras, one total‐sky lightning channel imager, two lightning channel imagers, and two sets of slow and fast electric field measuring systems. Three upward flashes were initiated sequentially in the field of view of high‐speed video cameras. One of them was initiated approximately 0.35 ms after the return stroke of +CG flash from the Canton Tower, the tallest structure within a 12‐km radius of the +CG flash, while the other two upward flashes were initiated from two other, more distant tall objects, approximately 18 ms after the +CG flash stroke. The initiation of the latter two upward flashes could be caused by the combined effect of the return stroke of +CG flash, its associated continuing current, and K process in the cloud. Each of these three upward flashes contained multiple downward leader/upward return stroke sequences, with the first leader/return stroke sequence of the second and third flashes occurring only after the completion of the last leader/return stroke sequence of the preceding flash. The total number of strokes in the three upward flashes was 13, and they occurred over approximately 1.5 s.more » « less
- 
            null (Ed.)Abstract Time-correlated high-speed video and electric field change data for 139 natural, negative cloud-to-ground (CG)-lightning flashes reveal 615 return strokes (RSs) and 29 upward-illumination (UI)-type strokes. Among 121 multi-stroke flashes, 56% visibly connected to more than one ground location for either a RS or UI-type stroke. The number of separate ground-stroke connection locations per CG flash averaged 1.74, with maximum 6. This study examines the 88 subsequent strokes that involved a subsequent stepped leader (SSL), either reaching ground or intercepting a former leader to ground, in 61 flashes. Two basic modes by which these SSLs begin are described and are termed dart - then - stepped leaders herein. One inception mode occurs when a dart leader deflects from the prior main channel and begins propagating as a stepped leader to ground. In these ‘divert’ mode cases, the relevant interstroke time from the prior RS in the channel to the SSL inception from that path is long, ranging from 105 to 204 ms in four visible cases. The alternative mode of SSL inception occurs when a dart leader reaches the end of a prior unsuccessful branch—of an earlier competing dart leader, stepped leader, or initial leader—then begins advancing as a stepped leader toward ground. In this more common ‘branch’ mode (85% of visible cases), there may be no portion of the subsequent RS channel that is shared with a prior RS channel. These two inception modes, and variations among them, can occur in different subsequent strokes of the same flash.more » « less
- 
            Insights on Space‐Leader Characteristics and Evolution in Natural Negative Cloud‐to‐Ground LightningAbstract We present sub‐microsecond‐scale, high‐speed video camera observations of three negative stepped leaders in cloud‐to‐ground flashes with return‐stroke peak currents (estimated by the U.S. National Lightning Detection Network) of −17, −104, and −228 kA. The camera frame exposure times for these observations were 1.8, 1.0, and 0.74 µs, respectively. The 0.74 µs exposure time is the shortest reported to date. We observed the temporal and spatial evolution of space leaders from their inception to their attachment to the pre‐existing leader channel (PELC). For stepped leaders that led to return strokes having higher peak currents, the space leaders appear to have incepted at farther median two‐dimensional distances from their respective PELC‐attachment points. These median distances were 6.1, 16.6, and 17.6 m, respectively, for the three strokes. Our observations indicate that space leader characteristics are likely influenced by stepped‐leader line‐charge‐density, which is expected to be higher in strokes with higher return‐stroke peak currents.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
