skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atomistic insights into the nucleation and growth of platinum on palladium nanocrystals
Abstract Despite the large number of reports on colloidal nanocrystals, very little is known about the mechanistic details in terms of nucleation and growth at the atomistic level. Taking bimetallic core-shell nanocrystals as an example, here we integrate in situ liquid-cell transmission electron microscopy with first-principles calculations to shed light on the atomistic details involved in the nucleation and growth of Pt on Pd cubic seeds. We elucidate the roles played by key synthesis parameters, including capping agent and precursor concentration, in controlling the nucleation site, diffusion path, and growth pattern of the Pt atoms. When the faces of a cubic seed are capped by Br − , Pt atoms preferentially nucleate from corners and then diffuse to edges and faces for the creation of a uniform shell. The diffusion does not occur until the Pt deposited at the corner has reached a threshold thickness. At a high concentration of the precursor, self-nucleation takes place and the Pt clusters then randomly attach to the surface of a seed for the formation of a non-uniform shell. These atomistic insights offer a general guideline for the rational synthesis of nanocrystals with diverse compositions, structures, shapes, and related properties.  more » « less
Award ID(s):
2031494
PAR ID:
10405781
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report a versatile method based on seed-mediated growth for the facile synthesis of trimetallic Pd@PtxAu1−x core-shell nanocubes. By simply varying the feeding ratio between the Pt(II) and Au(III) precursors, the atomic ratio of Pt to Au in the shell and thereby the ensemble state of Pt atoms on the surface can be tuned to control the binding configuration of O2 molecules. Specifically, discrete Pt atoms on the surface promote the adsorption of O2 molecules in the Pauling configuration to enhance the catalytic selectivity of the nanoparticles toward H2O2 via the two-electron oxygen reduction reaction, with the Pd@Pt0.025Au0.975 nanocubes showing selectivity as high as 91% at 0.45 VRHE. This work offers a viable means to augment the electrocatalytic performance of alloy nanocrystals by controlling their surface compositions. 
    more » « less
  2. Abstract Fabrication of 3dmetal‐based core@shell nanocatalysts with engineered Pt‐surfaces provides an effective approach for improving the catalytic performance. The challenges in such preparation include shape control of the 3dmetallic cores and thickness control of the Pt‐based shells. Herein, we report a colloidal seed‐mediated method to prepare octahedral CuNi@Pt‐Cu core@shell nanocrystals using CuNi octahedral cores as the template. By precisely controlling the synthesis conditions including the deposition rate and diffusion rate of the shell‐formation through tuning the capping ligand, reaction temperature, and heating rate, uniform Pt‐based shells can be achieved with a thickness of <1 nm. The resultant carbon‐supported CuNi@Pt‐Cu core@shell nano‐octahedra showed superior activity in electrochemical methanol oxidation reaction (MOR) compared with the commercial Pt/C catalysts and carbon‐supported CuNi@Pt‐Cu nano‐polyhedron counterparts. 
    more » « less
  3. Abstract There is an urgent need to develop cost‐effective electrocatalysts based on Pt for a broad spectrum of applications, including those vital to the operation of fuel cells. Hollowing out the interior of Pt nanocrystals offers a simple and viable strategy for maximizing the utilization efficiency of this precious metal while enhancing the electrocatalytic performance. Herein, we report the synthesis and electrocatalytic evaluation of Pt−Ag icosahedral nanocages with an average wall thickness of 1.6 nm. The Pt atoms are coated on the surface of Ag icosahedral seeds, leading to the formation of Ag@PtnLcore‐shell icosahedral nanocrystals with tunable shell thicknesses. The core‐shell nanocrystals are then converted to icosahedral nanocages by selectively etching away the Ag in the core. The as‐obtained nanocages with a composition of Pt4.5Ag exhibit an almost 3‐fold enhancement in specific activity toward oxygen reduction relative to the commercial Pt/C in acid media. 
    more » « less
  4. Despite the well-known tendency for many alloys to undergo ordering transformations, the microscopic mechanism of ordering and its dependence on alloy composition remains largely unknown. Using the example of Pt 85 Fe 15 and Pt 65 Fe 35 alloy nanoparticles (NPs), herein we demonstrate the composition-dependent ordering processes on the single-particle level, where the nanoscale size effect allows for close interplay between surface and bulk in controlling the phase evolution. Using in situ electron microscopy observations, we show that the ordering transformation in Pt 85 Fe 15 NPs during vacuum annealing occurs via the surface nucleation and growth of L1 2 -ordered Pt 3 Fe domains that propagate into the bulk, followed by the self-sacrifice transformation of the surface region of the L1 2 Pt 3 Fe into a Pt skin. By contrast, the ordering in Pt 65 Fe 35 NPs proceeds via an interface mechanism by which the rapid formation of an L1 0 PtFe skin occurs on the NPs and the transformation boundary moves inward along with outward Pt diffusion. Although both the “nucleation and growth” and the “interface” mechanisms result in a core–shell configuration with a thin Pt-rich skin, Pt 85 Fe 15 NPs have an L1 2 Pt 3 Fe core, whereas Pt 65 Fe 35 NPs are composed of an L1 0 PtFe core. Using atomistic modeling, we identify the composition-dependent vacancy-assisted counterdiffusion of Pt and Fe atoms between the surface and core regions in controlling the ordering transformation pathway. This vacancy-assisted diffusion is further demonstrated by oxygen annealing, for which the selective oxidation of Fe results in a large number of Fe vacancies and thereby greatly accelerates the transformation kinetics. 
    more » « less
  5. We report the fabrication of Ag–Pd concave nanocrystals by introducing the Pd( ii ) precursor into an aqueous suspension of Ag nanocubes in the presence of cetyltrimethylammonium chloride (CTAC) under ambient conditions. Different from the previously reported work that involved the oxidation of Ag and deposition of Pd at random sites on the surface for the generation of Ag–Pd hollow nanocrystals, we demonstrate that the Cl − ions from CTAC can confine the oxidation of Ag atoms to the side faces of a nanocube while the resultant Pd atoms are deposited on the edges in an orthogonal manner. By controlling the amount of the Pd( ii ) precursor involved in a synthesis, we can transform Ag nanocubes into Ag–Pd nanocrystals with different degrees of concaveness for the side faces and controllable Pd contents. We characterize the outermost layer of concave surfaces for the as-obtained Ag–Pd nanocrystals by surface-enhanced Raman scattering (SERS) through the use of an isocyanide probe. This facile approach would enable the fabrication of Ag-based concave nanocrystals for applications in plasmonics and catalysis. 
    more » « less