skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global Variations in the Time Delays Between Polar Ionospheric Heating and the Neutral Density Response
Abstract We present results from a study of the time lags between changes in the energy flow into the polar regions and the response of the thermosphere to the heating. Measurements of the neutral density from the Challenging Mini‐satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) missions are used, along with calculations of the total Poynting flux entering the poles. During two major geomagnetic storms in 2003, these data show increased densities are first seen on the dayside edge of the auroral ovals after a surge in the energy input. At lower latitudes, the densities reach their peak values on the dayside earlier than on the night side. A puzzling response seen in the CHAMP measurements during the November 2003 storm was that the density at a fixed location near the “Harang discontinuity” remained at unusually low levels during three sequential orbit passes, while elsewhere the density increased. The entire database of measurements from the CHAMP and GRACE missions were used to derive maps of the density time lags across the globe. The maps show a large gradient between short and long time delays between 60° and 30° geographic latitude. They confirm the findings from the two storm periods, that near the equator, the density on the dayside responds earlier than on the nightside. The time lags are longest near 18–20 hr local time. The time lag maps could be applied to improve the accuracy of empirical thermosphere models, and developers of numerical models may find these results useful for comparisons with their calculations.  more » « less
Award ID(s):
2140204 2019465
PAR ID:
10405802
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Space Weather
Volume:
21
Issue:
4
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To improve Thermosphere–Ionosphere modeling during disturbed conditions, data assimilation schemes that can account for the large and fast-moving gradients moving through the modeled domain are necessary. We argue that this requires a physics based background model with a non-stationary covariance. An added benefit of using physics-based models would be improved forecasting capability over largely persistence-based forecasts of empirical models. As a reference implementation, we have developed an ensemble Kalman Filter (enKF) software called Thermosphere Ionosphere Data Assimilation (TIDA) using the physics-based Coupled Thermosphere Ionosphere Plasmasphere electrodynamics (CTIPe) model as the background. In this paper, we present detailed results from experiments during the 2003 Halloween Storm, 27–31 October 2003, under very disturbed ( K p  = 9) conditions while assimilating GRACE-A and B, and CHAMP neutral density measurements. TIDA simulates this disturbed period without using the L1 solar wind measurements, which were contaminated by solar energetic protons, by estimating the model drivers from the density measurements. We also briefly present statistical results for two additional storms: September 27 – October 2, 2002, and July 26 – 30, 2004, to show that the improvement in assimilated neutral density specification is not an artifact of the corrupted forcing observations during the 2003 Halloween Storm. By showing statistical results from assimilating one satellite at a time, we show that TIDA produces a coherent global specification for neutral density throughout the storm – a critical capability in calculating satellite drag and debris collision avoidance for space traffic management. 
    more » « less
  2. null (Ed.)
    The specification and prediction of density fluctuations in the thermosphere, especially during geomagnetic storms, is a key challenge for space weather observations and modeling. It is of great operational importance for tracking objects orbiting in near-Earth space. For low-Earth orbit, variations in neutral density represent the most important uncertainty for propagation and prediction of satellite orbits. An international conference in 2018 conducted under the auspices of the NASA Community Coordinated Modeling Center (CCMC) included a workshop on neutral density modeling, using both empirical and numerical methods, and resulted in the organization of an initial effort of model comparison and evaluation. Here, we present an updated metric for model assessment under geomagnetic storm conditions by dividing a storm in four phases with respect to the time of minimum Dst and then calculating the mean density ratios and standard deviations and correlations. Comparisons between three empirical (NRLMSISE-00, JB2008 and DTM2013) and two first-principles models (TIE-GCM and CTIPe) and neutral density data sets that include measurements by the CHAMP, GRACE, and GOCE satellites for 13 storms are presented. The models all show reduced performance during storms, notably much increased standard deviations, but DTM2013, JB2008 and CTIPe did not on average reveal a significant bias in the four phases of our metric. DTM2013 and TIE-GCM driven with the Weimer model achieved the best results taking the entire storm event into account, while NRLMSISE-00 systematically and significantly underestimates the storm densities. Numerical models are still catching up to empirical methods on a statistical basis, but as their drivers become more accurate and they become available at higher resolutions, they will surpass them in the foreseeable future. 
    more » « less
  3. Abstract In this study, we present ionospheric observations of field‐aligned currents from AMPERE and the ESA Swarm A satellite, in conjunction with high‐resolution thermospheric density measurements from accelerometers on board Swarm C and GRACE‐FO, for the third and 4 February 2022 geomagnetic storms that led to the loss of 38 Starlink internet satellites. We study the global storm time response of the thermospheric density enhancements, including their decay and latitudinal distribution. We find that the thermospheric density enhances globally in response to high‐latitude energy input from the magnetosphere‐solar wind system and takes at least a full day to recover to pre‐storm density levels. We also find that the greatest density perturbations occur at polar latitudes consistent with the magnetosphere‐ionosphere dayside cusp, and that there appeared to be a saturation of the thermospheric density during the geomagnetic storm on the fourth. Our results highlight the critical importance of high‐latitude ionospheric observations when diagnosing potentially hazardous conditions for low‐Earth‐orbit satellites. 
    more » « less
  4. Abstract Machine learning (ML) models are universal function approximators and—if used correctly—can summarize the information content of observational data sets in a functional form for scientific and engineering applications. A benefit to ML over parametric models is that there are no a priori assumptions about particular basis functions which can potentially limit the phenomena that can be modeled. In this work, we develop ML models on three data sets: the Space Environment Technologies High Accuracy Satellite Drag Model (HASDM) density database, a spatiotemporally matched data set of outputs from the Jacchia‐Bowman 2008 Empirical Thermospheric Density Model (JB2008), and an accelerometer‐derived density data set from CHAllenging Minisatellite Payload (CHAMP). These ML models are compared to the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar (NRLMSIS 2.0) model to study the presence of post‐storm cooling in the middle‐thermosphere. We find that both NRLMSIS 2.0 and JB2008‐ML do not account for post‐storm cooling and consequently perform poorly in periods following strong geomagnetic storms (e.g., the 2003 Halloween storms). Conversely, HASDM‐ML and CHAMP‐ML do show evidence of post‐storm cooling indicating that this phenomenon is present in the original data sets. Results show that density reductions up to 40% can occur 1–3 days post‐storm depending on the location and strength of the storm. 
    more » « less
  5. Abstract The geospace environment is volatile and highly driven. Space weather has effects on Earth's magnetosphere that cause a dynamic and enigmatic response in the thermosphere, particularly on the evolution of neutral mass density. Many models exist that use space weather drivers to produce a density response, but these models are typically computationally expensive or inaccurate for certain space weather conditions. In response, this work aims to employ a probabilistic machine learning (ML) method to create an efficient surrogate for the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE‐GCM), a physics‐based thermosphere model. Our method leverages principal component analysis to reduce the dimensionality of TIE‐GCM and recurrent neural networks to model the dynamic behavior of the thermosphere much quicker than the numerical model. The newly developed reduced order probabilistic emulator (ROPE) uses Long‐Short Term Memory neural networks to perform time‐series forecasting in the reduced state and provide distributions for future density. We show that across the available data, TIE‐GCM ROPE has similar error to previous linear approaches while improving storm‐time modeling. We also conduct a satellite propagation study for the significant November 2003 storm which shows that TIE‐GCM ROPE can capture the position resulting from TIE‐GCM density with <5 km bias. Simultaneously, linear approaches provide point estimates that can result in biases of 7–18 km. 
    more » « less