Abstract This work investigates mid‐ and low‐latitude ionospheric disturbances over the American sector during a moderate but geo‐effective geomagnetic storm on 13–14 March 2022 (π‐Day storm), using ground‐based Global Navigation Satellite System total electron content data, ionosonde observations, and space‐borne measurements from the Global‐scale Observations of Limb and Disk (GOLD), Swarm, the Defense Meteorological Satellite Program (DMSP), and the Ionospheric Connection Explorer (ICON) satellites. Our results show that this modest but geo‐effective storm created a number of large ionospheric disturbances, especially the dynamic multi‐scale electron density gradient features in the storm main phase as follows: (a) The low‐latitude equatorial ionization anomaly (EIA) exhibited a dramatic storm‐time deformation and reformation, where the EIA crests evolved into a bright equatorial band for 1–2 hr and then quickly separated back into the typical double‐crest structure with a broad crest width and deep equatorial trough. (b) Strong equatorial plasma bubbles (EPBs) occurred with an abnormally high latitude/altitude extension, reaching the geomagnetic latitude of ∼30°, corresponding to an Apex height of 2,600 km above the dip equator. (c) The midlatitude ionosphere experienced a conspicuous storm‐enhanced density (SED) plume structure associated with the subauroral polarization stream (SAPS). This SED/SAPS feature showed an unusual temporal variation that intensified and diminished twice. These distinct mid‐ and low‐latitude ionospheric disturbances could be attributed to the storm‐time electrodynamic effect of electric field perturbation, along with contributions from neutral dynamics and thermospheric composition change.
more »
« less
The 2022 Starlink Geomagnetic Storms: Global Thermospheric Response to a High‐Latitude Ionospheric Driver
Abstract In this study, we present ionospheric observations of field‐aligned currents from AMPERE and the ESA Swarm A satellite, in conjunction with high‐resolution thermospheric density measurements from accelerometers on board Swarm C and GRACE‐FO, for the third and 4 February 2022 geomagnetic storms that led to the loss of 38 Starlink internet satellites. We study the global storm time response of the thermospheric density enhancements, including their decay and latitudinal distribution. We find that the thermospheric density enhances globally in response to high‐latitude energy input from the magnetosphere‐solar wind system and takes at least a full day to recover to pre‐storm density levels. We also find that the greatest density perturbations occur at polar latitudes consistent with the magnetosphere‐ionosphere dayside cusp, and that there appeared to be a saturation of the thermospheric density during the geomagnetic storm on the fourth. Our results highlight the critical importance of high‐latitude ionospheric observations when diagnosing potentially hazardous conditions for low‐Earth‐orbit satellites.
more »
« less
- Award ID(s):
- 2002574
- PAR ID:
- 10532371
- Publisher / Repository:
- Space Weather
- Date Published:
- Journal Name:
- Space Weather
- Volume:
- 22
- Issue:
- 2
- ISSN:
- 1542-7390
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Starlink satellites launched on 3 February 2022 were lost before they fully arrived in their designated orbits. The loss was attributed to two moderate geomagnetic storms that occurred consecutively on 3–4 February. We investigate the thermospheric neutral mass density variation during these storms with the Multiscale Atmosphere‐Geospace Environment (MAGE) model, a first‐principles, fully coupled geospace model. Simulated neutral density enhancements are validated by Swarm satellite measurements at the altitude of 400–500 km. Comparison with standalone TIEGCM and empirical NRLMSIS 2.0 and DTM‐2013 models suggests better performance by MAGE in predicting the maximum density enhancement and resolving the gradual recovery process. Along the Starlink satellite orbit in the middle thermosphere (∼200 km altitude), MAGE predicts up to 150% density enhancement near the second storm peak while standalone TIEGCM, NRLMSIS 2.0, and DTM‐2013 suggest only ∼50% increase. MAGE also suggests altitudinal, longitudinal, and latitudinal variability of storm‐time percentage density enhancement due to height dependent Joule heating deposition per unit mass, thermospheric circulation changes, and traveling atmospheric disturbances. This study demonstrates that a moderate storm can cause substantial density enhancement in the middle thermosphere. Thermospheric mass density strongly depends on the strength, timing, and location of high‐latitude energy input, which cannot be fully reproduced with empirical models. A physics‐based, fully coupled geospace model that can accurately resolve the high‐latitude energy input and its variability is critical to modeling the dynamic response of thermospheric neutral density during storm time.more » « less
-
Abstract We study the variations of the topside ionospheric ion density measured by Defense Meteorological Satellite Program satellites during the intense magnetic storm on 7–10 November 2004. It is found for the first time that quasi‐periodic enhancements in the ion density with a period of ∼6 hr occur nearly simultaneously at 0630, 0830, and 0930 local time in the dawn sector during the storm main phase with southward interplanetary magnetic field (IMF). The quasi‐periodic density enhancements extend from the southern subauroral latitudes to the northern subauroral latitudes. In the dusk sector, the topside ion density during the storm main phase is increased at middle latitudes for ∼12 hr but shows decrease or relatively small increase over the magnetic equator, indicating that penetration electric fields dominate the ion density redistribution. Similar quasi‐periodic enhancements in the topside ion density are also observed in the dawn sector during other intense magnetic storms. The solar wind and IMF do not have quasi‐periodic variations in this storm case. Periodic processes in geospace, such as periodic substorms in the magnetosphere, waves and tides in the atmosphere, and traveling ionospheric disturbances, cannot explain the observed periodic enhancements of the ionospheric ion density. We suggest that the magnetosphere‐ionospheric‐thermospheric system may have an intrinsic period of ∼6 hr and that oscillations of the magnetosphere‐ionospheric‐thermospheric system with this period can be excited during intense magnetic storms, although the mechanisms for the generation of the long‐periodic oscillations are not understood.more » « less
-
Abstract The upper boundary height of the traditional community general circulation model of the ionosphere‐thermosphere system is too low to be applied to the topside ionosphere/thermosphere study. In this study, the National Center for Atmospheric Research Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (NCAR‐TIEGCM) was successfully extended upward by four scale heights from 400–600 km to 700–1,200 km depending on solar activity, named TIEGCM‐X. The topside ionosphere and thermosphere simulated by TIEGCM‐X agree well with the observations derived from a topside sounder and satellite drag data. In addition, the neutral density, temperature, and electron density simulated by TIEGCM‐X are morphologically consistent with the NCAR‐TIEGCM simulations before extension. The latitude‐altitude distribution of the equatorial ionization anomaly derived from TIEGCM‐X is more reasonable. During geomagnetic storm events, the thermospheric responses of TIEGCM‐X are similar to NCAR‐TIEGCM. However, the ionospheric storm effects in TIEGCM‐X are stronger than those in NCAR‐TIEGCM and are even opposites at some middle and low latitudes due to the presence of more closed magnetic field lines. Defense Meteorological Satellite Program observations prove that the ionospheric storm effect of TIEGCM‐X is more reasonable. The well‐validated TIEGCM‐X has significant potential applications in ionospheric/thermospheric studies, such as the responses to storms, low‐latitude dynamics, and data assimilation.more » « less
-
Abstract On 3 February 2022, at 18:13 UTC, SpaceX launched and a short time later deployed 49 Starlink satellites at an orbit altitude between 210 and 320 km. The satellites were meant to be further raised to 550 km. However, the deployment took place during the main phase of a moderate geomagnetic storm, and another moderate storm occurred on the next day. The resulting increase in atmospheric drag led to 38 out of the 49 satellites reentering the atmosphere in the following days. In this work, we use both observations and simulations to perform a detailed investigation of the thermospheric conditions during this storm. Observations at higher altitudes, by Swarm‐A (∼438 km, 09/21 Local Time [LT]) and the Gravity Recovery and Climate Experiment Follow‐On (∼505 km, 06/18 LT) missions show that during the main phase of the storms the neutral mass density increased by 110% and 120%, respectively. The storm‐time enhancement extended to middle and low latitudes and was stronger in the northern hemisphere. To further investigate the thermospheric variations, we used six empirical and first‐principle numerical models. We found the models captured the upper and lower thermosphere changes, however, their simulated density enhancements differ by up to 70%. Further, the models showed that at the low orbital altitudes of the Starlink satellites (i.e., 200–300 km) the global averaged storm‐time density enhancement reached up to ∼35%–60%. Although such storm effects are far from the largest, they seem to be responsible for the reentry of the 38 satellites.more » « less