skip to main content


Title: Developing the genotype‐to‐phenotype relationship in evolutionary theory: A primer of developmental features
Abstract

For decades, there have been repeated calls for more integration across evolutionary and developmental biology. However, critiques in the literature and recent funding initiatives suggest this integration remains incomplete. We suggest one way forward is to consider how we elaborate the most basic concept of development, the relationship between genotype and phenotype, in traditional models of evolutionary processes. For some questions, when more complex features of development are accounted for, predictions of evolutionary processes shift. We present a primer on concepts of development to clarify confusion in the literature and fuel new questions and approaches. The basic features of development involve expanding a base model of genotype‐to‐phenotype to include the genome, space, and time. A layer of complexity is added by incorporating developmental systems, including signal‐response systems and networks of interactions. The developmental emergence of function, which captures developmental feedbacks and phenotypic performance, offers further model elaborations that explicitly link fitness with developmental systems. Finally, developmental features such as plasticity and developmental niche construction conceptualize the link between a developing phenotype and the external environment, allowing for a fuller inclusion of ecology in evolutionary models. Incorporating aspects of developmental complexity into evolutionary models also accommodates a more pluralistic focus on the causal importance of developmental systems, individual organisms, or agents in generating evolutionary patterns. Thus, by laying out existing concepts of development, and considering how they are used across different fields, we can gain clarity in existing debates around the extended evolutionary synthesis and pursue new directions in evolutionary developmental biology. Finally, we consider how nesting developmental features in traditional models of evolution can highlight areas of evolutionary biology that need more theoretical attention.

 
more » « less
NSF-PAR ID:
10405840
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Evolution & Development
ISSN:
1520-541X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding the links between genetic variation and fitness in natural populations is a central goal of evolutionary genetics. This monumental task spans the fields of classical and molecular genetics, population genetics, biochemistry, physiology, developmental biology, and ecology. Advances to our molecular and developmental toolkits are facilitating integrative approaches across these traditionally separate fields, providing a more complete picture of the genotype‐phenotype map in natural and non‐model systems. Here, we summarize research presented at the first annual symposium of the UNVEIL Network, an NSF‐funded collaboration between the University of Montana and the University of Nebraska, Lincoln, which took place from the 1st to the 3rd of June, 2018. We discuss how this body of work advances basic evolutionary science, what it implies for our ability to predict evolutionary change, and how it might inform novel conservation strategies.

     
    more » « less
  2. Abstract The spectacular radiation of insects has produced a stunning diversity of phenotypes. During the past 250 years, research on insect systematics has generated hundreds of terms for naming and comparing them. In its current form, this terminological diversity is presented in natural language and lacks formalization, which prohibits computer-assisted comparison using semantic web technologies. Here we propose a Model for Describing Cuticular Anatomical Structures (MoDCAS) which incorporates structural properties and positional relationships for standardized, consistent, and reproducible descriptions of arthropod phenotypes. We applied the MoDCAS framework in creating the ontology for the Anatomy of the Insect Skeleto-Muscular system (AISM). The AISM is the first general insect ontology that aims to cover all taxa by providing generalized, fully logical, and queryable, definitions for each term. It was built using the Ontology Development Kit (ODK), which maximizes interoperability with Uberon (Uberon multi-species anatomy ontology) and other basic ontologies, enhancing the integration of insect anatomy into the broader biological sciences. A template system for adding new terms, extending, and linking the AISM to additional anatomical, phenotypic, genetic, and chemical ontologies is also introduced. The AISM is proposed as the backbone for taxon-specific insect ontologies and has potential applications spanning systematic biology and biodiversity informatics, allowing users to (1) use controlled vocabularies and create semi-automated computer-parsable insect morphological descriptions; (2) integrate insect morphology into broader fields of research, including ontology-informed phylogenetic methods, logical homology hypothesis testing, evo-devo studies, and genotype to phenotype mapping; and (3) automate the extraction of morphological data from the literature, enabling the generation of large-scale phenomic data, by facilitating the production and testing of informatic tools able to extract, link, annotate, and process morphological data. This descriptive model and its ontological applications will allow for clear and semantically interoperable integration of arthropod phenotypes in biodiversity studies. 
    more » « less
  3. Abstract

    The origin of novel complex traits constitutes a central yet largely unresolved challenge in evolutionary biology. Intriguingly, many of the most promising breakthroughs in understanding the genesis of evolutionary novelty in recent years have occurred not in evolutionary biology itself, but through the comparative study of development and, more recently, the interface of developmental biology and ecology. Here, I discuss how these insights are changing our understanding of what matters in the origin of novel, complex traits in ontogeny and evolution. Specifically, my essay has two major objectives. First, I discuss how the nature of developmental systems biases the production of phenotypic variation in the face of novel or stressful environments toward functional, integrated and, possibly, adaptive variants. This, in turn, allows the production of novel phenotypes to precede (rather than follow) changes in genotype and allows developmental processes that are the product of past evolution to shape evolutionary change that has yet to occur. Second, I explore how this nature of developmental systems has itself evolved over time, increasing the repertoire of ontogenies to pursue a wider range of objectives across an expanding range of conditions, thereby creating an increasingly extensive affordance landscape in development and developmental evolution. Developmental systems and their evolution can thus be viewed as dynamic processes that modify their own means across ontogeny and phylogeny. The study of these dynamics necessitates more than the strict reductionist approach that currently dominates the fields of developmental and evolutionary developmental biology.

     
    more » « less
  4. Abstract Background

    MacArthur and Wilson's theory of island biogeography has been a foundation for obtaining testable predictions from models of community assembly and for developing models that integrate across scales and disciplines. Historically, however, these developments have focused on integration across ecological and macroevolutionary scales and on predicting patterns of species richness, abundance distributions, trait data and/or phylogenies. The distribution of genetic variation across species within a community is an emerging pattern that contains signatures of past population histories, which might provide an historical lens for the study of contemporary communities. As intraspecific genetic diversity data become increasingly available at the scale of entire communities, there is an opportunity to integrate microevolutionary processes into our models, moving towards development of a genetic theory of island biogeography.

    Motivation/goal

    We aim to promote the development of process‐based biodiversity models that predict community genetic diversity patterns together with other community‐scale patterns. To this end, we review models of ecological, microevolutionary and macroevolutionary processes that are best suited to the creation of unified models, and the patterns that these predict. We then discuss ongoing and potential future efforts to unify models operating at different organizational levels, with the goal of predicting multidimensional community‐scale data including a genetic component.

    Main conclusions

    Our review of the literature shows that despite recent efforts, further methodological developments are needed, not only to incorporate the genetic component into existing island biogeography models, but also to unify processes across scales of biological organization. To catalyse these developments, we outline two potential ways forward, adopting either a top‐down or a bottom‐up approach. Finally, we highlight key ecological and evolutionary questions that might be addressed by unified models including a genetic component and establish hypotheses about how processes across scales might impact patterns of community genetic diversity.

     
    more » « less
  5. null (Ed.)
    Developmental plasticity facilitates energetically costly but potentially fitness-enhancing adjustments to phenotypic trajectories in response to environmental stressors, and thus may significantly impact patterns of growth, morbidity, and mortality over the life course. Ongoing research into epigenetics and developmental biology indicate that the timing of stress exposures is a key factor when assessing their impact on developmental processes. Specifically, stress experienced within sensitive developmental windows (SDWs), discrete developmental periods characterized by heightened energy requirements and rapid growth, may alter the pace and tempo of growth in ways that significantly influence phenotypic development over both the short and long term. In human skeletal biology, efforts to assess how developmental environments shape health outcomes over the life course could be enhanced by incorporating the SDW concept into existing methodological approaches. The goal of this article is to outline an interpretive framework for identifying and interpreting evidence of developmental stress in the skeletal system using the SDW concept. This framework provides guidance for the identification of elements most likely to capture evidence of stress most relevant to a study's core research questions, the interpretation of developmental stress exhibited by those elements, and the relationship of skeletal indicators of stress to the demographic patterning of morbidity and mortality. Use of the SDW concept in skeletal biology has the potential to enrich traditional approaches to addressing developmental origins of health and disease hypotheses, by targeting periods in which individuals are most susceptible to stress and thus most likely to exhibit plasticity in response. 
    more » « less