skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ANALYTIC SPREAD OF FILTRATIONS ON TWO-DIMENSIONAL NORMAL LOCAL RINGS
Abstract In this paper, we prove that a classical theorem by McAdam about the analytic spread of an ideal in a Noetherian local ring continues to be true for divisorial filtrations on a two-dimensional normal excellent local ring R , and that the Hilbert polynomial of the fiber cone of a divisorial filtration on R has a Hilbert function which is the sum of a linear polynomial and a bounded function. We prove these theorems by first studying asymptotic properties of divisors on a resolution of singularities of the spectrum of R . The filtration of the symbolic powers of an ideal is an example of a divisorial filtration. Divisorial filtrations are often not Noetherian, giving a significant difference in the classical case of filtrations of powers of ideals and divisorial filtrations.  more » « less
Award ID(s):
2054394
PAR ID:
10405903
Author(s) / Creator(s):
Date Published:
Journal Name:
Nagoya Mathematical Journal
Volume:
249
ISSN:
0027-7630
Page Range / eLocation ID:
239 to 268
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Unknown (Ed.)
    Let I = {In} be a Q-divisorial filtration on a two dimensional normal excellent local ring (R, mR). Let R[I] = ⊕n≥0In be the Rees algebra of I and τ : ProjR[I]) → Spec(R) be the natural morphism. The reduced fiber cone of I is the R- algebra R[I]/ p mRR[I], and the reduced exceptional fiber of τ is Proj(R[I]/ p mRR[I]). In [7], we showed that in spite of the fact that R[I] is often not Noetherian, mRR[I] always has only finitely many minimal primes, so τ −1 (mR) has only finitely many ir- reducible components. In Theorem 1.2, we give an explicit description of the scheme structure of Proj(R[I]). As a corollary, we obtain in Theorem 1.3 a new proof of a theorem of F. Russo, showing that Proj(R[I]) is always Noetherian and that R[I] is Noetherian if and only if Proj(R[I]) is a proper R-scheme. In Corollary 1.4 to Theorem 1.2, we give an explicit description of the scheme structure of the reduced exceptional fiber Proj(R[I]/ p mRR[I]) of τ , in terms of the possible values 0, 1 or 2 of the analytic spread l(I) = dim R[I]/mRR[I]. In the case that l(I) = 0, τ −1 (mR) is the emptyset; this case can only occur if R[I] is not Noetherian. At the end of the introduction, we give a simple example of a graded filtration J of a two dimensional regular local ring R such that Proj(R[J ]) is not Noetherian. This filtration is necessarily not divisorial 
    more » « less
  2. A Noetherian local ring ( R , m ) (R,\frak {m}) is called Buchsbaum if the difference ℓ ( R / q ) − e ( q , R ) \ell (R/\mathfrak {q})-e(\mathfrak {q}, R) , where q \mathfrak {q} is an ideal generated by a system of parameters, is a constant independent of q \mathfrak {q} . In this article, we study the tight closure analog of this condition. We prove that in an unmixed excellent local ring ( R , m ) (R,\frak {m}) of prime characteristic p > 0 p>0 and dimension at least one, the difference e ( q , R ) − ℓ ( R / q ∗ ) e(\mathfrak {q}, R)-\ell (R/\mathfrak {q}^*) is independent of q \mathfrak {q} if and only if the parameter test ideal τ p a r ( R ) \tau _{\mathrm {par}}(R) contains m \frak {m} . We also provide a characterization of this condition via derived category which is analogous to Schenzel’s criterion for Buchsbaum rings. 
    more » « less
  3. We prove that the multiplicity of a filtration of a local ring satisfies various convexity properties. In particular, we show the multiplicity is convex along geodesics. As a consequence, we prove that the volume of a valuation is log convex on simplices of quasi-monomial valuations and give a new proof of a theorem of Xu and Zhuang on the uniqueness of normalized volume minimizers. In another direction, we generalize a theorem of Rees on multiplicities of ideals to filtrations and characterize when the Minkowski inequality for filtrations is an equality under mild assumptions. 
    more » « less
  4. We extend the asymptotic Samuel function of an ideal to a filtration and show that many of the good properties of this function for an ideal are true for filtrations. There are, however, interesting differences, which we explore. We study the notion of projective equivalence of filtrations and the relation between the asymptotic Samuel function and the multiplicity of a filtration. We further consider the case of discrete valued filtrations and show that they have particularly nice properties. 
    more » « less
  5. We extend the asymptotic Samuel function of an ideal to a filtration and show that many of the good properties of this function for an ideal are true for filtrations. There are, however, interesting differences, which we explore. We study the notion of projective equivalence of filtrations and the relation between the asymptotic Samuel function and the multiplicity of a filtration. We further consider the case of discrete valued filtrations and show that they have particularly nice properties. 
    more » « less