Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS‐based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large‐scale event for which we use medium resolution input layer (10 m) and a small‐scale event for which we use a high‐resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.
- NSF-PAR ID:
- 10405922
- Date Published:
- Journal Name:
- Hydrology
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2306-5338
- Page Range / eLocation ID:
- 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Among the different types of natural disasters, floods are the most devastating, widespread, and frequent. Floods account for approximately 30% of the total loss caused by natural disasters. Accurate flood-risk mapping is critical in reducing such damages by correctly predicting the extent of a flood when coupled with rain and stage gage data, supporting emergency-response planning, developing land use plans and regulations with regard to the construction of structures and infrastructures, and providing damage assessment in both spatial and temporal measurements. The reliability and accuracy of such flood assessment maps is dependent on the quality of the digital elevation model (DEM) in flood conditions. This study investigates the quality of an Unmanned Aerial Vehicle (UAV)-based DEM for spatial flood assessment mapping and evaluating the extent of a flood event in Princeville, North Carolina during Hurricane Matthew. The challenges and problems of on-demand DEM production during a flooding event were discussed. An accuracy analysis was performed by comparing the water surface extracted from the UAV-derived DEM with the water surface/stage obtained using the nearby US Geologic Survey (USGS) stream gauge station and LiDAR data.more » « less
-
null (Ed.)Abstract. High-resolution remote sensing imagery has been increasingly used for flood applications. Different methods have been proposed for flood extent mapping from creating water index to image classification from high-resolution data. Among these methods, deep learning methods have shown promising results for flood extent extraction; however, these two-dimensional (2D) image classification methods cannot directly provide water level measurements. This paper presents an integrated approach to extract the flood extent in three-dimensional (3D) from UAV data by integrating 2D deep learning-based flood map and 3D cloud point extracted from a Structure from Motion (SFM) method. We fine-tuned a pretrained Visual Geometry Group 16 (VGG-16) based fully convolutional model to create a 2D inundation map. The 2D classified map was overlaid on the SfM-based 3D point cloud to create a 3D flood map. The floodwater depth was estimated by subtracting a pre-flood Digital Elevation Model (DEM) from the SfM-based DEM. The results show that the proposed method is efficient in creating a 3D flood extent map to support emergency response and recovery activates during a flood event.more » « less
-
Inundation mapping is a critical task for damage assessment, emergency management, and prioritizing relief efforts during a flooding event. Remote sensing has been an effective tool for interpreting and analyzing water bodies and detecting floods over the past decades. In recent years, deep learning algorithms such as convolutional neural networks (CNNs) have demonstrated promising performance for remote sensing image classification for many applications, including inundation mapping. Unlike conventional algorithms, deep learning can learn features automatically from large datasets. This research aims to compare and investigate the performance of two state-of-the-art methods for 3D inundation mapping: a deep learning-based image analysis and a Geomorphic Flood Index (GFI). The first method, deep learning image analysis involves three steps: 1) image classification to delineate flood boundaries, 2) integrate the flood boundaries and topography data to create a three-dimensional (3D) water surface, and 3) compare the 3D water surface with pre-flood topography to estimate floodwater depth. The second method, i.e., GFI, involves three phases: 1) calculate a river basin morphological information, such as river height (hr) and elevation difference (H), 2) calibrate and measure GFI to delineate flood boundaries, and 3) calculate the coefficient parameter ( α ), and correct the value of hr to estimate inundation depth. The methods were implemented to generate 3D inundation maps over Princeville, North Carolina, United States during hurricane Matthew in 2016. The deep learning method demonstrated better performance with a root mean square error (RMSE) of 0.26 m for water depth. It also achieved about 98% in delineating the flood boundaries using UAV imagery. This approach is efficient in extracting and creating a 3D flood extent map at a different scale to support emergency response and recovery activities during a flood event.more » « less
-
Abstract Compound flooding frequently threatens life and assets of people who live in low‐lying coastal regions. Co‐occurrence or sequence of extremes (e.g., high river discharge and extreme coastal water level) is of paramount importance as it may result in flood hazards with potential impacts larger than each extreme in isolation. Here, we use a coupled approach, that is, bivariate statistical analysis linked to hydrodynamic modeling, to quantify compounding effects of flood drivers and generate flood hazard maps near Savannah, Georgia. Also, we integrate wetland elevation correction in digital elevation models to improve hydrodynamic simulations of compound events and hence the accuracy of flood hazard (inundation and velocity) maps. Using statistical measures, we analyze compounding effects of terrestrial/coastal flood drivers and wetland elevation correction on maximum floodwater height (MFH) and velocity (MFV) for 50‐year return period scenarios. In addition, we compare our results to MFH and MFV patterns of Hurricane Matthew that hit the West Atlantic Coasts on October 2016. The statistical measures indicate significant differences among the scenarios, partly explained by wetland elevation correction. Inundation and velocity maps suggest that a proposed composite, that is, synthesis of marginal
Q , marginalH , and “AND” scenarios, can lead to the lowest average underestimation of MFH (−0.35 m) and overestimation of MFV (0.20 m/s) within wetland areas. We conclude that a thorough compound flooding assessment should leverage statistical analysis and hydrodynamic modeling of extremes including corrections of coastal digital elevation models.