skip to main content

Title: Patch Similarity Convolutional Neural Network for Urban Flood Extent Mapping Using Bi-Temporal Satellite Multispectral Imagery
Urban flooding is a major natural disaster that poses a serious threat to the urban environment. It is highly demanded that the flood extent can be mapped in near real-time for disaster rescue and relief missions, reconstruction efforts, and financial loss evaluation. Many efforts have been taken to identify the flooding zones with remote sensing data and image processing techniques. Unfortunately, the near real-time production of accurate flood maps over impacted urban areas has not been well investigated due to three major issues. (1) Satellite imagery with high spatial resolution over urban areas usually has nonhomogeneous background due to different types of objects such as buildings, moving vehicles, and road networks. As such, classical machine learning approaches hardly can model the spatial relationship between sample pixels in the flooding area. (2) Handcrafted features associated with the data are usually required as input for conventional flood mapping models, which may not be able to fully utilize the underlying patterns of a large number of available data. (3) High-resolution optical imagery often has varied pixel digital numbers (DNs) for the same ground objects as a result of highly inconsistent illumination conditions during a flood. Accordingly, traditional methods of flood mapping have major more » limitations in generalization based on testing data. To address the aforementioned issues in urban flood mapping, we developed a patch similarity convolutional neural network (PSNet) using satellite multispectral surface reflectance imagery before and after flooding with a spatial resolution of 3 meters. We used spectral reflectance instead of raw pixel DNs so that the influence of inconsistent illumination caused by varied weather conditions at the time of data collection can be greatly reduced. Such consistent spectral reflectance data also enhance the generalization capability of the proposed model. Experiments on the high resolution imagery before and after the urban flooding events (i.e., the 2017 Hurricane Harvey and the 2018 Hurricane Florence) showed that the developed PSNet can produce urban flood maps with consistently high precision, recall, F1 score, and overall accuracy compared with baseline classification models including support vector machine, decision tree, random forest, and AdaBoost, which were often poor in either precision or recall. The study paves the way to fuse bi-temporal remote sensing images for near real-time precision damage mapping associated with other types of natural hazards (e.g., wildfires and earthquakes). « less
Authors:
; ; ;
Award ID(s):
1940091
Publication Date:
NSF-PAR ID:
10207918
Journal Name:
Remote Sensing
Volume:
11
Issue:
21
Page Range or eLocation-ID:
2492
ISSN:
2072-4292
Sponsoring Org:
National Science Foundation
More Like this
  1. Floods are often associated with hurricanes making landfall. When tropical cyclones/hurricanes make landfall, they are usually accompanied by heavy rainfall and storm surges that inundate coastal areas. The worst natural disaster in the United States, in terms of loss of life and property damage, was caused by hurricane storm surges and their associated coastal flooding. To monitor coastal flooding in the areas affected by hurricanes, we used data from sensors aboard the operational Polar-orbiting and Geostationary Operational Environmental Satellites. This study aims to apply a downscaling model to recent severe coastal flooding events caused by hurricanes. To demonstrate how high-resolution 3D flood mapping can be made from moderate-resolution operational satellite observations, the downscaling model was applied to the catastrophic coastal flooding in Florida due to Hurricane Ian and in New Orleans due to Hurricanes Ida and Laura. The floodwater fraction data derived from the SNPP/NOAA-20 VIIRS (Visible Infrared Imaging Radiometer Suite) observations at the original 375 m resolution were input into the downscaling model to obtain 3D flooding information at 30 m resolution, including flooding extent, water surface level and water depth. Compared to a 2D flood extent map at the VIIRS’ original 375 m resolution, the downscaled 30 mmore »floodwater depth maps, even when shown as 2D images, can provide more details about floodwater distribution, while 3D visualizations can demonstrate floodwater depth more clearly in relative to the terrain and provide a more direct perception of the inundation situations caused by hurricanes. The use of 3D visualization can help users clearly see floodwaters occurring over various types of terrain conditions, thus identifying a hazardous flood from non-hazardous flood types. Furthermore, 3D maps displaying floodwater depth may provide additional information for rescue efforts and damage assessments. The downscaling model can help enhance the capabilities of moderate-to-coarse resolution sensors, such as those used in operational weather satellites, flood detection and monitoring.« less
  2. Among all the natural hazards throughout the world, floods occur most frequently. They occur in high latitude regions, such as: 82% of the area of North America; most of Russia; Norway, Finland, and Sweden in North Europe; China and Japan in Asia. River flooding due to ice jams may happen during the spring breakup season. The Northeast and North Central region, and some areas of the western United States, are especially harmed by floods due to ice jams and snowmelt. In this study, observations from operational satellites are used to map and monitor floods due to ice jams and snowmelt. For a coarse-to-moderate resolution sensor on board the operational satellites, like the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the National Polar-orbiting Partnership (NPP) and the Joint Polar Satellite System (JPSS) series, and the Advanced Baseline Imager (ABI) on board the GOES-R series, a pixel is usually composed of a mix of water and land. Water fraction can provide more information and can be estimated through mixed-pixel decomposition. The flood map can be derived from the water fraction difference after and before flooding. In high latitude areas, while conventional observations are usually sparse, multiple observations can be available frommore »polar-orbiting satellites during a single day, and river forecasters can observe ice movement, snowmelt status and flood water evolution from satellite-based flood maps, which is very helpful in ice jam determination and flood prediction. The high temporal resolution of geostationary satellite imagery, like that of the ABI, can provide the greatest extent of flood signals, and multi-day composite flood products from higher spatial resolution imagery, such as VIIRS, can pinpoint areas of interest to uncover more details. One unique feature of our JPSS and GOES-R flood products is that they include not only normal flood type, but also a special flood type as the supra-snow/ice flood, and moreover, snow and ice masks. Following the demonstrations in this study, it is expected that the JPSS and GOES-R flood products, with ice and snow information, can allow dynamic monitoring and prediction of floods due to ice jams and snowmelt for wide-end users.« less
  3. In September of 2017, Hurricane Irma made landfall within the Rookery Bay National Estuarine Research Reserve of southwest Florida (USA) as a category 3 storm with winds in excess of 200 km h−1. We mapped the extent of the hurricane’s impact on coastal land cover with a seasonal time series of satellite imagery. Very high-resolution (i.e., <5 m pixel) satellite imagery has proven effective to map wetland ecosystems, but challenges in data acquisition and storage, algorithm training, and image processing have prevented large-scale and time-series mapping of these data. We describe our approach to address these issues to evaluate Rookery Bay ecosystem damage and recovery using 91 WorldView-2 satellite images collected between 2010 and 2018 mapped using automated techniques and validated with a field campaign. Land cover was classified seasonally at 2 m resolution (i.e., healthy mangrove, degraded mangrove, upland, soil, and water) with an overall accuracy of 82%. Digital change detection methods show that hurricane-related degradation was 17% of mangrove forest (~5 km2). Approximately 35% (1.7 km2) of this loss recovered one year after Hurricane Irma. The approach completed the mapping approximately 200 times faster than existing methods, illustrating the ease with which regional high-resolution mapping may be accomplishedmore »efficiently.« less
  4. Abstract

    Smart resilience is the beneficial result of the collision course of the fields of data science and urban resilience to flooding. The objective of this study is to propose and demonstrate a smart flood resilience framework that leverages heterogeneous community-scale big data and infrastructure sensor data to enhance predictive risk monitoring and situational awareness. The smart flood resilience framework focuses on four core capabilities that could be augmented by the use of heterogeneous community-scale big data and analytics techniques: (1) predictive flood risk mapping; (2) automated rapid impact assessment; (3) predictive infrastructure failure prediction and monitoring; and (4) smart situational awareness capabilities. We demonstrate the components of these core capabilities of the smart flood resilience framework in the context of the 2017 Hurricane Harvey in Harris County, Texas. First, we present the use of flood sensors for the prediction of floodwater overflow in channel networks and inundation of co-located road networks. Second, we discuss the use of social media and machine learning techniques for assessing the impacts of floods on communities and sensing emotion signals to examine societal impacts. Third, we describe the use of high-resolution traffic data in network-theoretic models for nowcasting of flood propagation on road networksmore »and the disrupted access to critical facilities, such as hospitals. Fourth, we introduce how location-based and credit card transaction data were used in spatial analyses to proactively evaluate the recovery of communities and the impacts of floods on businesses. These analyses show that the significance of core capabilities of the smart flood resilience framework in helping emergency managers, city planners, public officials, responders, and volunteers to better cope with the impacts of catastrophic flooding events.

    « less
  5. Aerial images provide important situational aware- ness for responding to natural disasters such as hurricanes. They are well-suited for providing information for damage estimation and localization (DEL); i.e., characterizing the type and spatial extent of damage following a disaster. Despite recent advances in sensing and unmanned aerial systems technology, much of post-disaster aerial imagery is still taken by handheld DSLR cameras from small, manned, fixed-wing aircraft. However, these handheld cameras lack IMU information, and images are taken opportunistically post-event by operators. As such, DEL from such imagery is still a highly manual and time-consuming process. We propose an approach to both detect damage in aerial images and localize it in world coordinates, with specific focus on detecting and localizing flooding. The approach is based on using structure from motion to relate image coordinates to world coordinates via a projective transformation, using class activation mapping to detect the extent of damage in an image, and applying the projective transformation to localize damage in world coordinates. We evaluate the performance of our approach on post-event data from the 2016 Louisiana floods, and find that our approach achieves a precision of 88%. Given this high precision using limited data, we argue that thismore »approach is currently viable for fast and effective DEL from handheld aerial imagery for disaster response.« less