Evolutionary radiations generate most of Earth’s biodiversity, but are there common ecomorphological traits among the progenitors of radiations? In Synapsida (the mammalian total group), ‘small-bodied faunivore’ has been hypothesized as the ancestral state of most major radiating clades, but this has not been quantitatively assessed across multiple radiations. To examine macroevolutionary patterns in a phylogenetic context, we generated a time-calibrated metaphylogeny (‘metatree’) comprising 1,888 synapsid species from the Carboniferous through the Eocene (305–34 Ma) based on 269 published character matrices. We used comparative methods to investigate body size and dietary evolution during successive synapsid radiations. Faunivory is the ancestral dietary regime of each major synapsid radiation, but relatively small body size is only established as the common ancestral state of radiations near the origin of Mammaliaformes in the Late Triassic. The faunivorous ancestors of synapsid radiations typically have numerous novel characters compared with their contemporaries, and these derived traits may have helped them to survive faunal turnover events and subsequently radiate.
more »
« less
Survival of the novel: derived faunivores are the forerunners of major synapsid radiations
Evolutionary radiations generate most of Earth’s biodiversity, but are there common ecomorphological traits among the progenitors of radiations? In Synapsida (mammalian total group), ‘small-bodied faunivore’ has been hypothesized as the ancestral state of most major radiating clades. To quantitatively test this hypothesis across multiple radiations, we used a meta-phylogeny (‘metatree’) of Carboniferous through Eocene (305–34 Ma) species in conjunction with jaw lengths (as a proxy for body size) and diet reconstructions for 404 synapsid species. We focus primarily on five major radiations: (i) non-therapsid pelycosaurs, (ii) non-cynodont therapsids, (iii) non-mammaliaform cynodonts, (iv) non-therian mammaliaforms, and (v) therians. Contrary to our expectations, we did not find universal support for the hypothesis that ‘small-bodied faunivore’ is the ancestral state of radiating synapsid groups. Although faunivory was the typical ancestral diet of each major ecological radiation, the radiation forerunners were not relatively small-bodied in many non-mammaliaform synapsid groups. Instead, the small-to-large trend in body-size within radiations does not become common until the end-Triassic size bottleneck near the base of Mammaliaformes. We also find that ecomorphological diversification was often preceded by the extinction of contemporary clades. As a potential causal mechanism for the observed macroevolutionary patterns, it is tempting to assume that the forerunners of major radiations were relatively unspecialized faunivores with reduced extinction risk. However, ‘survival of the unspecialized’ does not fully explain our results. Many of the progenitors of major synapsid radiations may appear to be unspecialized faunivores, but this is likely due to observational bias: the early lineages of each radiation were ‘unspecialized’ relative to many of their later descendant lineages, but, compared to their contemporaries, they exhibit numerous novel characters. These characters were likely important in promoting their long-term survival and diversification, but it appears that mass extinctions and other faunal turnovers were necessary for the lineages that possessed these characters to reach their full evolutionary potential. Therefore, ‘survival of the novel’ appears to be a persistent macroevolutionary pattern throughout synapsid history.
more »
« less
- Award ID(s):
- 1754502
- PAR ID:
- 10405929
- Date Published:
- Journal Name:
- Journal of vertebrate paleontology
- Issue:
- Program and Abstracts, 2022
- ISSN:
- 0272-4634
- Page Range / eLocation ID:
- 163
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
‘Small-bodied faunivore’ is the dominant ancestral ecomorphotype early in crown mammalian radiations, but it is unknown how far back this trend extends within Synapsida (the mammalian total group). To examine synapsid macroevolutionary patterns in a phylogenetic context, we built a time-calibrated meta-phylogeny of 2,128 synapsid species from the Carboniferous through Eocene (305–34 Ma), based on 211 published character matrices, each weighted according to their dependence on ‘parent’ matrices. All published character matrices focusing on non-mammalian synapsids were included, making the meta-phylogeny comprehensive for non-mammaliaform synapsids. Further, we used the most comprehensive early mammaliaform matrices. We then collected jaw length measurements (as a proxy for body size) and dietary information for 408 synapsid species (37 non-therapsid pelycosaurs, 134 non-cynodont therapsids, 46 non-mammaliaform cynodonts, 80 non-therian mammaliaforms, and 178 therians). We used the meta-phylogeny in conjunction with jaw length measurements to investigate patterns of body-size and dietary evolution during radiations of synapsid subclades. The results show that faunivory is the typical ancestral diet of each major radiation within Synapsida, but the small-to-large trend in body-size within radiations does not become established until the end-Triassic size bottleneck near the base of Mammaliaformes. Instead, ‘pelycosaur’, ‘therapsid’, and ‘cynodont’ subclades have ancestral jaw lengths that are considerably larger than non-therian mammaliaforms and therians. The shift to small ancestral body sizes is one of several aspects of the mammalian phenotype to emerge in the Late Triassic. Furthermore, by placing ‘mammaliaforms’ and mammals near their likely lower size limit, this change forced most subsequent body-size diversification to consist of trends toward larger sizes, altering macroevolutionary dynamics for the remainder of synapsid history.more » « less
-
Mammals are the only living members of the larger clade Synapsida, which has a fossil record spanning 320 Ma. Despite the fact that much of the ecological diversity of mammals has been considered in the light of limb morphology, the ecological comparability of mammals to their fossil forerunners has not been critically assessed. Because of the wide use of limb morphology in testing ecomorphological hypothesis about extinct tetrapods, we sought: (i) to estimate when in synapsid history, modern mammals become analogues for predicting fossil ecologies; (ii) to document examples of ecomorphological convergence; and (iii) to compare the functional solutions of distinct synapsid radiations. We quantitatively compared the forelimb shapes of the multiple fossil synapsid radiations to a broad sample of extant Mammalia representing a variety of divergent locomotor ecologies. Our results indicate that each synapsid radiation explored different areas of morphospace and arrived at functional solutions that reflected their distinctive ancestral morphologies. This work counters the narrative of non-mammalian synapsid forelimb evolution as a linear progression towards more mammalian morphologies. Instead, a disparate array of early-evolving shapes subsequently contracted towards more mammal-like forms.more » « less
-
A large phylogenetic tree is a critical component of comparative analyses that examine broad macroevolutionary patterns, such as the tempo and mode of evolution or morphological disparity through time. However, the sample of species included in published phylogenies rarely aligns with the species that researchers wish to examine in comparative analyses. For instance, early synapsid phylogenies often focus on specific subclades, such as pelycosaurs or anomodonts, rather than broadly encompassing all known synapsid lineages, thus hindering analyses that require detailed sampling across synapsid lineages. To address this issue, we generated a time-calibrated meta-phylogeny (‘metatree’) of synapsid species from the Carboniferous through the Eocene (305–34 Ma). The metatree approach uses source character matrices (rather than source trees) and generates complete sets of most parsimonious trees, combining them rather than generating a single consensus tree. We incorporated 269 published morphological character matrices, which includes every non-mammaliaform synapsid character matrix that has ever been published (as of July 2021) and 57 mammaliaform-focused matrices. Due to evolving ideas of relationships and frequent matrix reuse, each of the matrices was weighted according to its publication year and its dependence on ‘parent’ matrices using an established metatree procedure. The metatree approach relies on XML metadata files that reconcile taxon names to valid Paleobiology Database taxa (PBDB). Because the metatree approach utilizes PBDB taxonomy, we vetted the PBDB information and made approximately 500 additions and corrections to taxon information. The resulting metatree includes 2,128 synapsid species, making it one of the largest fossil phylogenies ever produced. Approximately 1600 species are non-mammaliaform synapsids, and the remaining ~525 species are mammaliaforms, including many of the known Mesozoic and early Cenozoic mammaliaforms. The massive taxonomic and temporal breadth of the metatree make it broadly applicable to studies on synapsid macroevolution. The past decade has witnessed a resurgence of research on non-mammaliaform synapsids, and our new, comprehensive metatree provides a rigorous foundation for continuing work on macroevolutionary patterns and processes among the forerunners of mammals.more » « less
-
Adaptive radiations are bursts in biodiversity that generate new evolutionary lineages and phenotypes. However, because they typically occur over millions of years, it is unclear how their macroevolutionary dynamics vary through time and among groups of organisms. Phyllostomid bats radiated extensively for diverse diets-from insects to vertebrates, fruit, nectar, and blood-and we use their molars as a model system to examine the dynamics of adaptive radiations. Three-dimensional shape analyses of lower molars of Noctilionoidea (Phyllostomidae and close relatives) indicate that different diet groups exhibit distinct morphotypes. Comparative analyses further reveal that phyllostomids are a striking example of a hierarchical radiation; phyllostomids' initial, higher-level diversification involved an "early burst" in molar morphological disparity as lineages invaded new diet-affiliated adaptive zones, followed by subsequent lower-level diversifications within adaptive zones involving less dramatic morphological changes. We posit that strong selective pressures related to initial shifts to derived diets may have freed molars from morpho-functional constraints associated with the ancestral molar morphotype. Then, lineages with derived diets (frugivores and nectarivores) diversified within broad adaptive zones, likely reflecting finer-scale niche partitioning. Importantly, the observed early burst pattern is only evident when examining molar traits that are strongly linked to diet, highlighting the value of ecomorphological traits in comparative studies. Our results support the hypothesis that adaptive radiations are commonly hierarchical and involve different tempos and modes at different phylogenetic levels, with early bursts being more common at higher levels.more » « less