skip to main content


Title: Survival of the novel: derived faunivores are the forerunners of major synapsid radiations
Evolutionary radiations generate most of Earth’s biodiversity, but are there common ecomorphological traits among the progenitors of radiations? In Synapsida (mammalian total group), ‘small-bodied faunivore’ has been hypothesized as the ancestral state of most major radiating clades. To quantitatively test this hypothesis across multiple radiations, we used a meta-phylogeny (‘metatree’) of Carboniferous through Eocene (305–34 Ma) species in conjunction with jaw lengths (as a proxy for body size) and diet reconstructions for 404 synapsid species. We focus primarily on five major radiations: (i) non-therapsid pelycosaurs, (ii) non-cynodont therapsids, (iii) non-mammaliaform cynodonts, (iv) non-therian mammaliaforms, and (v) therians. Contrary to our expectations, we did not find universal support for the hypothesis that ‘small-bodied faunivore’ is the ancestral state of radiating synapsid groups. Although faunivory was the typical ancestral diet of each major ecological radiation, the radiation forerunners were not relatively small-bodied in many non-mammaliaform synapsid groups. Instead, the small-to-large trend in body-size within radiations does not become common until the end-Triassic size bottleneck near the base of Mammaliaformes. We also find that ecomorphological diversification was often preceded by the extinction of contemporary clades. As a potential causal mechanism for the observed macroevolutionary patterns, it is tempting to assume that the forerunners of major radiations were relatively unspecialized faunivores with reduced extinction risk. However, ‘survival of the unspecialized’ does not fully explain our results. Many of the progenitors of major synapsid radiations may appear to be unspecialized faunivores, but this is likely due to observational bias: the early lineages of each radiation were ‘unspecialized’ relative to many of their later descendant lineages, but, compared to their contemporaries, they exhibit numerous novel characters. These characters were likely important in promoting their long-term survival and diversification, but it appears that mass extinctions and other faunal turnovers were necessary for the lineages that possessed these characters to reach their full evolutionary potential. Therefore, ‘survival of the novel’ appears to be a persistent macroevolutionary pattern throughout synapsid history.  more » « less
Award ID(s):
1754502
NSF-PAR ID:
10405929
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of vertebrate paleontology
Issue:
Program and Abstracts, 2022
ISSN:
0272-4634
Page Range / eLocation ID:
163
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ‘Small-bodied faunivore’ is the dominant ancestral ecomorphotype early in crown mammalian radiations, but it is unknown how far back this trend extends within Synapsida (the mammalian total group). To examine synapsid macroevolutionary patterns in a phylogenetic context, we built a time-calibrated meta-phylogeny of 2,128 synapsid species from the Carboniferous through Eocene (305–34 Ma), based on 211 published character matrices, each weighted according to their dependence on ‘parent’ matrices. All published character matrices focusing on non-mammalian synapsids were included, making the meta-phylogeny comprehensive for non-mammaliaform synapsids. Further, we used the most comprehensive early mammaliaform matrices. We then collected jaw length measurements (as a proxy for body size) and dietary information for 408 synapsid species (37 non-therapsid pelycosaurs, 134 non-cynodont therapsids, 46 non-mammaliaform cynodonts, 80 non-therian mammaliaforms, and 178 therians). We used the meta-phylogeny in conjunction with jaw length measurements to investigate patterns of body-size and dietary evolution during radiations of synapsid subclades. The results show that faunivory is the typical ancestral diet of each major radiation within Synapsida, but the small-to-large trend in body-size within radiations does not become established until the end-Triassic size bottleneck near the base of Mammaliaformes. Instead, ‘pelycosaur’, ‘therapsid’, and ‘cynodont’ subclades have ancestral jaw lengths that are considerably larger than non-therian mammaliaforms and therians. The shift to small ancestral body sizes is one of several aspects of the mammalian phenotype to emerge in the Late Triassic. Furthermore, by placing ‘mammaliaforms’ and mammals near their likely lower size limit, this change forced most subsequent body-size diversification to consist of trends toward larger sizes, altering macroevolutionary dynamics for the remainder of synapsid history. 
    more » « less
  2. Previous work has shown increased morphological variance within the forelimbs of the Permian synapsid group known as Therapsida over that of their Carboniferous and early Permian forerunners (“pelycosaurs”). Considering that disparity trends have been known to point to underlying macroevolutionary transitions, here we analyzed morphological variance alongside several additional macroevolutionary metrics to better isolate possible evolutionary mechanisms. Shape data was collected on a sample of 119 humeri and 99 ulnae comprising three major synapsid radiations with a temporal range from the Carboniferous into the Triassic. Taxonomic sample included all major groups of pelycosaur-grade synapsids, all five recognized non-cynodontian therapsid clades, and a sample of pre-prozostrodontian cynodonts. Procrustes variance - a multivariate quantification of morphospace occupation - was the chosen disparity metric for the study. Rate of phenotypic change, which considers the amount of shape change that would be necessary to achieve observed morphologies given the shape of the closely related taxa, was analyzed as the metric for evolutionary rate. Both metrics were considered through-time upon genera present in sequential 5 million year time bins. Our results expand upon previous findings that disparity increases throughout the earliest stages of the Permian, coincident with the diversification of pelycosaurs and the emergence of Therapsida. This expanded dataset further shows that disparity approaches an asymptote around 270 million years ago and only increases marginally through the late Permian, remaining between 0.018–0.021 from 275-245 mya. In contrast, evolutionary rate does not appear to asymptote during this same interval, starting at a low of 6.17e-6 (300 mya) and increasing to a peak of 1.78e-5 right before the End Permian Mass Extinction Event (252 mya). The continuing increase of evolutionary rate shows that morphological change continues across taxa, but the plateauing of morphological disparity suggests that morphospace is not expanding concurrent with this. The incongruence between these two metrics suggests a critical change in evolutionary mode, wherein morphological change continues rapidly but does not result in the evolution of novel morphologies. These results provide some of the strongest quantitative data yet of an evolutionary constraint acting upon the morphology of the synapsid forelimb through deep time. 
    more » « less
  3. A large phylogenetic tree is a critical component of comparative analyses that examine broad macroevolutionary patterns, such as the tempo and mode of evolution or morphological disparity through time. However, the sample of species included in published phylogenies rarely aligns with the species that researchers wish to examine in comparative analyses. For instance, early synapsid phylogenies often focus on specific subclades, such as pelycosaurs or anomodonts, rather than broadly encompassing all known synapsid lineages, thus hindering analyses that require detailed sampling across synapsid lineages. To address this issue, we generated a time-calibrated meta-phylogeny (‘metatree’) of synapsid species from the Carboniferous through the Eocene (305–34 Ma). The metatree approach uses source character matrices (rather than source trees) and generates complete sets of most parsimonious trees, combining them rather than generating a single consensus tree. We incorporated 269 published morphological character matrices, which includes every non-mammaliaform synapsid character matrix that has ever been published (as of July 2021) and 57 mammaliaform-focused matrices. Due to evolving ideas of relationships and frequent matrix reuse, each of the matrices was weighted according to its publication year and its dependence on ‘parent’ matrices using an established metatree procedure. The metatree approach relies on XML metadata files that reconcile taxon names to valid Paleobiology Database taxa (PBDB). Because the metatree approach utilizes PBDB taxonomy, we vetted the PBDB information and made approximately 500 additions and corrections to taxon information. The resulting metatree includes 2,128 synapsid species, making it one of the largest fossil phylogenies ever produced. Approximately 1600 species are non-mammaliaform synapsids, and the remaining ~525 species are mammaliaforms, including many of the known Mesozoic and early Cenozoic mammaliaforms. The massive taxonomic and temporal breadth of the metatree make it broadly applicable to studies on synapsid macroevolution. The past decade has witnessed a resurgence of research on non-mammaliaform synapsids, and our new, comprehensive metatree provides a rigorous foundation for continuing work on macroevolutionary patterns and processes among the forerunners of mammals. 
    more » « less
  4. Mammals are the only living members of the larger clade Synapsida, which has a fossil record spanning 320 Ma. Despite the fact that much of the ecological diversity of mammals has been considered in the light of limb morphology, the ecological comparability of mammals to their fossil forerunners has not been critically assessed. Because of the wide use of limb morphology in testing ecomorphological hypothesis about extinct tetrapods, we sought: (i) to estimate when in synapsid history, modern mammals become analogues for predicting fossil ecologies; (ii) to document examples of ecomorphological convergence; and (iii) to compare the functional solutions of distinct synapsid radiations. We quantitatively compared the forelimb shapes of the multiple fossil synapsid radiations to a broad sample of extant Mammalia representing a variety of divergent locomotor ecologies. Our results indicate that each synapsid radiation explored different areas of morphospace and arrived at functional solutions that reflected their distinctive ancestral morphologies. This work counters the narrative of non-mammalian synapsid forelimb evolution as a linear progression towards more mammalian morphologies. Instead, a disparate array of early-evolving shapes subsequently contracted towards more mammal-like forms. 
    more » « less
  5. Synapsid evolution can be characterized by three successive radiations: the Permo– Carboniferous pelycosaurs, the Permo–Triassic Therapsida, and the Triassic Eucynodontia. Previous geometric morphometric research at the clade level revealed a continuous increase in humeral morphological disparity in Therapsida, in contrast to their pelycosaur forebearers. Here we present associated data on ulnar morphological disparity, as well an an overall taxonomic expansion of the analyses. This increase in sample size brings the dataset to 765 specimens from which functional units across the forelimb were analyzed. Further, it allows for a more detailed discussion of variance within nearly every major group of early Synapsida, as well as across 80 million years of geologic history. Groups were analyzed for Procrustes variance in 5 million year time bins from 305–225 Mya (Carboniferous–Triassic). In all analyzed functional units—the proximal humerus, distal humerus, and proximal elbow—within group disparity is higher in therapsid families than in pelycosaur families. In addition, therapsid family level disparity is much more variable between groups and across time. Ulnar variance values are higher than humeral values for the entire study period. Procrustes variance for the forelimb decreases across the End Permian Mass Extinction Event in the major therapsid groups that survived it— Anomodontia and Cynodontia. Macroevolutionary changes observed in Synapsida have historically been associated with ecological diversification. Cynodontia and Anomodontia have the highest variance in Therapsida, while Gorgonopsia has the lowest. The high values in Anomodontia, as one of the most taxonomically and ecological diverse clades of Therapsida, suggests that forelimb variance is linked to aspects of ecological diversification. Further, within pelycosaurs Sphenacodontidae has the lowest variance through time, while Ophiacodontidae has the highest. The finding of uniquely high variance levels in Ophiacodontidae, hypothesized by some to be semi-acquatic, is suggestive of a potentially unique forelimb ecomorphology. This research provides evidence that along with major shifts in forelimb morphology, within-family disparity dynamics may have been critical to the evolutionary success of individual synapsid sub-orders. 
    more » « less