Methods for state estimation that rely on visual information are challenging on legged robots due to rapid changes in the viewing angle of onboard cameras. In this work, we show that by leveraging structure in the way that the robot locomotes, the accuracy of visual-inertial SLAM in these challenging scenarios can be increased. We present a method that takes advantage of the underlying periodic predictability often present in the motion of legged robots to improve the performance of the feature tracking module within a visual-inertial SLAM system. Our method performs multi-session SLAM on a single robot, where each session is responsible for mapping during a distinct portion of the robot’s gait cycle. Our method produces lower absolute trajectory error than several state-of-the-art methods for visual-inertial SLAM in both a simulated environment and on data collected on a quadrupedal robot executing dynamic gaits. On real-world bounding gaits, our median trajectory error was less than 35% of the error of the next best estimate provided by state-of-the-art methods.
more »
« less
Localization and tracking of stationary users for augmented reality
In augmented reality applications it is essential to know the position and orientation of the user to correctly register virtual 3D content in the user’s field of view. For this purpose, visual tracking through simultaneous localization and mapping (SLAM) is often used. However, when applied to the commonly occurring situation where the users are mostly stationary, many methods presented in previous research have two key limitations. First, SLAM techniques alone do not address the problem of global localization with respect to prior models of the environment. Global localization is essential in many applications where multiple users are expected to track within a shared space, such as spectators at a sporting event. Secondly, these methods often assume significant translational movement to accurately reconstruct and track from a local model of the environment, causing challenges for many stationary applications. In this paper, we extend recent research on Spherical Localization and Tracking to support relocalization after tracking failure, as well as global localization in large shared environments, and optimize the method for operation on mobile hardware. We also evaluate various state-of-the-art localization approaches, the robustness of our visual tracking method, and demonstrate the effectiveness of our system in real-life scenarios.
more »
« less
- Award ID(s):
- 2144822
- PAR ID:
- 10406019
- Date Published:
- Journal Name:
- The Visual Computer
- ISSN:
- 0178-2789
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dennison, Mark S.; Krum, David M.; Sanders-Reed, John; Arthur, Jarvis (Ed.)This paper presents research concerning the use of visual-inertial Simultaneous Localization And Mapping (SLAM) algorithms to aid in Continuous Wave (CW) radar target mapping. SLAM is an established field in which radar has been used to internally contribute to the localization algorithms. Instead, the application in this case is to use SLAM outputs to localize radar data and construct three-dimensional target maps which can be viewed live in augmented reality. These methods are transferable to other types of radar units and sensors, but this paper presents the research showing how the methods can be applied to calculate depth efficiently with CW radar through triangulation using a Boolean intersection algorithm. Localization of the radar target is achieved through quaternion algebra. Due to the compact nature of the SLAM and CW devices, the radar unit can be operated entirely handheld. Targets are scanned in a free-form manner where there is no need to have a gridded scanning layout. The main advantage to this method is eliminating many hours of usage training and expertise, thereby eliminating ambiguity in the location, size and depth of buried or hidden targets. Additionally, this method grants the user the additional power, penetration and sensitivity of CW radar without the lack of range finding. Applications include pipe and buried structure location, avalanche rescue, structural health monitoring and historical site research.more » « less
-
Localization in urban environments is becoming increasingly important and used in tools such as ARCore [11], ARKit [27] and others. One popular mechanism to achieve accurate indoor localization as well as a map of the space is using Visual Simultaneous Localization and Mapping (Visual-SLAM). However, Visual-SLAM is known to be resource-intensive in memory and processing time. Further, some of the operations grow in complexity over time, making it challenging to run on mobile devices continuously. Edge computing provides additional compute and memory resources to mobile devices to allow offloading of some tasks without the large latencies seen when offloading to the cloud. In this paper, we present Edge-SLAM, a system that uses edge computing resources to offload parts of Visual-SLAM. We use ORB-SLAM2 as a prototypical Visual-SLAM system and modify it to a split architecture between the edge and the mobile device. We keep the tracking computation on the mobile device and move the rest of the computation, i.e., local mapping and loop closure, to the edge. We describe the design choices in this effort and implement them in our prototype. Our results show that our split architecture can allow the functioning of the Visual-SLAM system long-term with limited resources without affecting the accuracy of operation. It also keeps the computation and memory cost on the mobile device constant which would allow for deployment of other end applications that use Visual-SLAM.more » « less
-
Localization in urban environments is becoming increasingly important and used in tools such as ARCore [ 18 ], ARKit [ 34 ] and others. One popular mechanism to achieve accurate indoor localization and a map of the space is using Visual Simultaneous Localization and Mapping (Visual-SLAM). However, Visual-SLAM is known to be resource-intensive in memory and processing time. Furthermore, some of the operations grow in complexity over time, making it challenging to run on mobile devices continuously. Edge computing provides additional compute and memory resources to mobile devices to allow offloading tasks without the large latencies seen when offloading to the cloud. In this article, we present Edge-SLAM, a system that uses edge computing resources to offload parts of Visual-SLAM. We use ORB-SLAM2 [ 50 ] as a prototypical Visual-SLAM system and modify it to a split architecture between the edge and the mobile device. We keep the tracking computation on the mobile device and move the rest of the computation, i.e., local mapping and loop closing, to the edge. We describe the design choices in this effort and implement them in our prototype. Our results show that our split architecture can allow the functioning of the Visual-SLAM system long-term with limited resources without affecting the accuracy of operation. It also keeps the computation and memory cost on the mobile device constant, which would allow for the deployment of other end applications that use Visual-SLAM. We perform a detailed performance and resources use (CPU, memory, network, and power) analysis to fully understand the effect of our proposed split architecture.more » « less
-
Edge computing is increasingly proposed as a solution for reducing resource consumption of mobile devices running simultaneous localization and mapping (SLAM) algorithms, with most edge-assisted SLAM systems assuming the communication resources between the mobile device and the edge server to be unlimited, or relying on heuristics to choose the information to be transmitted to the edge. This paper presents AdaptSLAM, an edge-assisted visual (V) and visual-inertial (VI) SLAM system that adapts to the available communication and computation resources, based on a theoretically grounded method we developed to select the subset of keyframes (the representative frames) for constructing the best local and global maps in the mobile device and the edge server under resource constraints. We implemented AdaptSLAM to work with the state-of-the-art open-source V-and VI-SLAM ORB-SLAM3 framework, and demonstrated that, under constrained network bandwidth, AdaptSLAM reduces the tracking error by 62% compared to the best baseline method.more » « less
An official website of the United States government

