Generative adversarial networks (GAN) have witnessed tremendous growth in recent years, demonstrating wide applicability in many domains. However, GANs remain notoriously difficult for people to interpret, particularly for modern GANs capable of generating photo‐realistic imagery. In this work we contribute a visual analytics approach for GAN interpretability, where we focus on the analysis and visualization of GAN disentanglement. Disentanglement is concerned with the ability to control content produced by a GAN along a small number of distinct, yet semantic, factors of variation. The goal of our approach is to shed insight on GAN disentanglement, above and beyond coarse summaries, instead permitting a deeper analysis of the data distribution modeled by a GAN. Our visualization allows one to assess a single factor of variation in terms of groupings and trends in the data distribution, where our analysis seeks to relate the learned representation space of GANs with attribute‐based semantic scoring of images produced by GANs. Through use‐cases, we show that our visualization is effective in assessing disentanglement, allowing one to quickly recognize a factor of variation and its overall quality. In addition, we show how our approach can highlight potential dataset biases learned by GANs.
more » « less- Award ID(s):
- 2007444
- NSF-PAR ID:
- 10406072
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Computer Graphics Forum
- Volume:
- 41
- Issue:
- 3
- ISSN:
- 0167-7055
- Format(s):
- Medium: X Size: p. 85-95
- Size(s):
- p. 85-95
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Disentangled generative models map a latent code vector to a target space, while enforcing that a subset of the learned latent codes are interpretable and associated with distinct properties of the target distribution. Recent advances have been dominated by Variational AutoEncoder (VAE)-based methods, while training disentangled generative adversarial networks (GANs) remains challenging. In this work, we show that the dominant challenges facing disentangled GANs can be mitigated through the use of self-supervision. We make two main contributions: first, we design a novel approach for training disentangled GANs with self-supervision. We propose contrastive regularizer, which is inspired by a natural notion of disentanglement: latent traversal. This achieves higher disentanglement scores than state-of-the-art VAE- and GAN-based approaches. Second, we propose an unsupervised model selection scheme called ModelCentrality, which uses generated synthetic samples to compute the medoid (multi-dimensional generalization of median) of a collection of models. The current common practice of hyper-parameter tuning requires using ground-truths samples, each labelled with known perfect disentangled latent codes. As real datasets are not equipped with such labels, we propose an unsupervised model selection scheme and show that it finds a model close to the best one, for both VAEs and GANs. Combining contrastive regularization with ModelCentrality, we improve upon the state-of-the-art disentanglement scores significantly, without accessing the supervised data.more » « less
-
We propose an approach to generate realistic and high-fidelity stock market data based on generative adversarial networks (GANs). Our Stock-GAN model employs a conditional Wasserstein GAN to capture history dependence of orders. The generator design includes specially crafted aspects including components that approximate the market's auction mechanism, augmenting the order history with order-book constructions to improve the generation task. We perform an ablation study to verify the usefulness of aspects of our network structure. We provide a mathematical characterization of distribution learned by the generator. We also propose statistics to measure the quality of generated orders. We test our approach with synthetic and actual market data, compare to many baseline generative models, and find the generated data to be close to real data.more » « less
-
We propose FineGAN, a novel unsupervised GAN framework, which disentangles the background, object shape, and object appearance to hierarchically generate images of fine-grained object categories. To disentangle the factors without any supervision, our key idea is to use information theory to associate each factor to a latent code, and to condition the relationships between the codes in a specific way to induce the desired hierarchy. Through extensive experiments, we show that FineGAN achieves the desired disentanglement to generate realistic and diverse images belonging to fine-grained classes of birds, dogs, and cars. Using FineGAN's automatically learned features, we also cluster real images as a first attempt at solving the novel problem of unsupervised fine-grained object category discovery.more » « less
-
Electromigration (EM) analysis for complicated interconnects requires the solving of partial differential equations, which is expensive. In this paper, we propose a fast transient hydrostatic stress analysis for EM failure assessment for multi-segment interconnects using generative adversarial networks (GANs). Our work is inspired by the image synthesis and feature of generative deep neural networks. The stress evaluation of multi-segment interconnects, modeled by partial differential equations, can be viewed as time-varying 2D-images-to-image problem where the input is the multi-segment interconnects topology with current densities and the output is the EM stress distribution in those wire segments at the given aging time. We show that the conditional GAN can be exploited to attend the temporal dynamics for modeling the time-varying dynamic systems like stress evolution over time. The resulting algorithm, called {\it EM-GAN}, can quickly give accurate stress distribution of a general multi-segment wire tree for a given aging time, which is important for full-chip fast EM failure assessment. Our experimental results show that the EM-GAN shows 6.6\% averaged error compared to COMSOL simulation results with orders of magnitude speedup. It also delivers $8.3 \times$ speedup over state-of-the-art analytic based EM analysis solver.more » « less
-
In this paper, we present a simple approach to train Generative Adversarial Networks (GANs) in order to avoid a mode collapse issue. Implicit models such as GANs tend to generate better samples compared to explicit models that are trained on tractable data likelihood. However, GANs overlook the explicit data density characteristics which leads to undesirable quantitative evaluations and mode collapse. To bridge this gap, we propose a hybrid generative adversarial network (HGAN) for which we can enforce data density estimation via an autoregressive model and support both adversarial and likelihood framework in a joint training manner which diversify the estimated density in order to cover different modes. We propose to use an adversarial network to transfer knowledge from an autoregressive model (teacher) to the generator (student) of a GAN model. A novel deep architecture within the GAN formulation is developed to adversarially distill the autoregressive model information in addition to simple GAN training approach. We conduct extensive experiments on real-world datasets (i.e., MNIST, CIFAR-10, STL-10) to demonstrate the effectiveness of the proposed HGAN under qualitative and quantitative evaluations. The experimental results show the superiority and competitiveness of our method compared to the baselines.more » « less