skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transition to Limit-Cycle Oscillation in Fluid-Structure Interactions: Mutual Correlations and Causal Dependencies
We investigate the dynamic characteristics corresponding to the structural fluctuations of a cantilever suspended in a turbulent flow. To investigate the intricate dynamics of the flow–structure interaction, first, we explore the ability of network analysis to identify the different dynamic states and probe the viability of using quantifiers of network topology as precursors for the onset of limit-cycle oscillations. By increasing the Reynolds number, we observe that the structural oscillations, measured using a strain gauge, transition from low-amplitude chaotic oscillations to large-amplitude periodic oscillations associated with limit-cycle oscillations. We characterize the dynamic states of the system by constructing the weighted correlation network from the time series of strain and identifying the network properties that have the potential to be used as precursors for the onset of limit-cycle oscillations. Furthermore, we use Pearson correlation to illustrate the evolution of mutual statistical influence between the structural oscillations and the flowfield. We use this information and the Granger causality to identify the causal dependence between the structural oscillations and velocity fluctuations. By identifying the causal variable during each regime, we illustrate the directional dependence through a cause–effect relationship in this flow–structure interaction as it transitions to limit-cycle oscillations.  more » « less
Award ID(s):
2053671
PAR ID:
10406144
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
AIAA Journal
Volume:
61
Issue:
4
ISSN:
0001-1452
Page Range / eLocation ID:
1475 to 1484
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Symmetry-breaking in coupled, identical, fast–slow systems produces a rich, dramatic variety of dynamical behavior—such as amplitudes and frequencies differing by an order of magnitude or more and qualitatively different rhythms between oscillators, corresponding to different functional states. We present a novel method for analyzing these systems. It identifies the key geometric structures responsible for this new symmetry-breaking, and it shows that many different types of symmetry-breaking rhythms arise robustly. We find symmetry-breaking rhythms in which one oscillator exhibits small-amplitude oscillations, while the other exhibits phase-shifted small-amplitude oscillations, large-amplitude oscillations, mixed-mode oscillations, or even undergoes an explosion of limit cycle canards. Two prototypical fast–slow systems illustrate the method: the van der Pol equation that describes electrical circuits and the Lengyel–Epstein model of chemical oscillators. 
    more » « less
  2. Exploding and vanishing gradient are both major problems often faced when an artificial neural network is trained with gradient descent. Inspired by the ubiquity and robustness of nonlinear oscillations in biological neural systems, we investigate the properties of their artificial counterpart, the stable limit cycle neural networks. Using a continuous time dynamical system interpretation of neural networks and backpropagation, we show that stable limit cycle neural networks have non-exploding gradients, and at least one effective non-vanishing gradient dimension. We conjecture that limit cycles can support the learning of long temporal dependence in both biological and artificial neural networks. 
    more » « less
  3. Grain boundaries (GBs) in perovskite solar cells and optoelectronic devices are widely regarded as detrimental defects that accelerate charge and energy losses through nonradiative carrier trapping and recombination, but the mechanism is still under debate owing to the diversity of GB configurations and behaviors. We combine ab initio electronic structure and machine learning force field to investigate evolution of the geometric and electronic structure of a CsPbBr 3 GB on a nanosecond timescale, which is comparable with the carrier recombination time. We demonstrate that the GB slides spontaneously within a few picoseconds increasing the band gap. Subsequent structural oscillations dynamically produce midgap trap states through Pb–Pb interactions across the GB. After several hundred picoseconds, structural distortions start to occur, increasing the occurrence of deep midgap states. We identify a distinct correlation of the average Pb–Pb distance and fluctuations in the ion coordination numbers with the appearance of the midgap states. Suppressing GB distortions through annealing and breaking up Pb–Pb dimers by passivation can efficiently alleviate the detrimental effects of GBs in perovskites. The study provides new insights into passivation of the detrimental GB defects, and demonstrates that structural and charge carrier dynamics in perovskites are intimately coupled. 
    more » « less
  4. Abstract In this study, we describe a method to construct a correlation map that captures the evolution of species‐specific dynamic information through the spatial correlation of high‐dimensional time‐series molecular dynamics (MD) simulation dataset for a series of borosilicate glasses. The correlation is based on ‘displacement’ between a pair of atomic configurations determined by the root mean square distance (RMSD) metric. We implement the correlation map as a quantitative visualization tool that provides a compressed representation of a high‐dimensional molecular dynamics dataset to inspect various physical aspects and capture distinct atomic dynamics—from large fluctuations to small local oscillations—for high‐temperature melt, linear cooling, and low‐temperature equilibration processes during molecular dynamics simulation of glasses. We capture species‐specific dynamics using this method that show different cooling dynamics for different glass formers and modifiers, especially the onset of slow dynamics and the variation of atomic dynamics at high temperatures. Furthermore, we show that the species‐specific atomic dynamics have structural origins that depend on the composition of the simulated borosilicate glasses. The correlation map serves as a visualization tool to rapidly survey changes in atomic configurations during different simulation conditions. 
    more » « less
  5. We study the change in the size and shape of the mean limit cycle of a stochastically driven nonlinear oscillator as a function of noise amplitude. Such dynamics occur in a variety of nonequilibrium systems, including the spontaneous oscillations of hair cells of the inner ear. The noise-induced distortion of the limit cycle generically leads to its rounding through the elimination of sharp (high-curvature) features through a process we call corner cutting. We provide a criterion that may be used to identify limit cycle regions most susceptible to such noise-induced distortions. By using this criterion, one may obtain more meaningful parametric fits of nonlinear dynamical models from noisy experimental data, such as those coming from spontaneously oscillating hair cells. 
    more » « less