skip to main content


Title: Carbon sequestration by multiple biological pump pathways in a coastal upwelling biome
Abstract

Multiple processes transport carbon into the deep ocean as part of the biological carbon pump, leading to long-term carbon sequestration. However, our ability to predict future changes in these processes is hampered by the absence of studies that have simultaneously quantified all carbon pump pathways. Here, we quantify carbon export and sequestration in the California Current Ecosystem resulting from (1) sinking particles, (2) active transport by diel vertical migration, and (3) the physical pump (subduction + vertical mixing of particles). We find that sinking particles are the most important and export 9.0 mmol C m−2d−1across 100-m depth while sequestering 3.9 Pg C. The physical pump exports more carbon from the shallow ocean than active transport (3.8 vs. 2.9 mmol C m−2d−1), although active transport sequesters more carbon (1.0 vs. 0.8 Pg C) because of deeper remineralization depths. We discuss the implications of these results for understanding biological carbon pump responses to climate change.

 
more » « less
Award ID(s):
2224726
PAR ID:
10406365
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The transfer of photosynthetically produced organic carbon from surface to mesopelagic waters draws carbon dioxide from the atmosphere1. However, current observation-based estimates disagree on the strength of this biological carbon pump (BCP)2. Earth system models (ESMs) also exhibit a large spread of BCP estimates, indicating limited representations of the known carbon export pathways3. Here we use several decades of hydrographic observations to produce a top-down estimate of the strength of the BCP with an inverse biogeochemical model that implicitly accounts for all known export pathways. Our estimate of total organic carbon (TOC) export at 73.4 m (model euphotic zone depth) is 15.00 ± 1.12 Pg C year−1, with only two-thirds reaching 100 m depth owing to rapid remineralization of organic matter in the upper water column. Partitioned by sequestration time below the euphotic zone,τ, the globally integrated organic carbon production rate withτ > 3 months is 11.09 ± 1.02 Pg C year−1, dropping to 8.25 ± 0.30 Pg C year−1forτ > 1 year, with 81% contributed by the non-advective-diffusive vertical flux owing to sinking particles and vertically migrating zooplankton. Nevertheless, export of organic carbon by mixing and other fluid transport of dissolved matter and suspended particles remains regionally important for meeting the respiratory carbon demand. Furthermore, the temperature dependence of the sequestration efficiency inferred from our inversion suggests that future global warming may intensify the recycling of organic matter in the upper ocean, potentially weakening the BCP.

     
    more » « less
  2. Abstract

    Mesopelagic fishes may contribute substantially to marine carbon export and sequestration. However, uncertainty in this contribution due to limited precision of mesopelagic biomass and bioenergetic rate estimates has not been thoroughly quantified for any study site. Datasets that can confront these challenges are rare, particularly for comparing fish-mediated carbon flux to other biological carbon pump pathways. Using data from a unique three-ship expedition in spring 2021 in the subarctic Northeast Atlantic Ocean, we compare carbon transported by adult fish, zooplankton, and sinking particles, and calculate uncertainty in the relative contribution of fishes. Results indicate biomass- and bioenergetic-based uncertainty contributed roughly equally to variance in estimated carbon transport. The plausible range of mesopelagic fish carbon flux spans an order of magnitude: 1.6–21 mg C m−2 d−1 to 200 m depth and 0.52–9.6 mg C m−2 d−1 to 500 m. Fishes contributed ∼0.52%–18% at 200 m to the total biological carbon pump, and ∼0.43%–13% at 500 m. Of the fish-mediated carbon transport to 200 m, ∼8%–30% is sequestered on climate-relevant time scales (>100 years). This reinforces that carbon transport should not be conflated with carbon sequestration. These findings have implications for prioritizing future empirical measurements, evaluating trade-offs in fisheries management, and understanding the role of fishes in the biological carbon pump.

     
    more » « less
  3. Abstract

    This study characterized ocean biological carbon pump metrics in the second iteration of the REgional Carbon Cycle Assessment and Processes (RECCAP2) project. The analysis here focused on comparisons of global and biome‐scale regional patterns in particulate organic carbon (POC) production and sinking flux from the RECCAP2 ocean biogeochemical model ensemble against observational products derived from satellite remote sensing, sediment traps, and geochemical methods. There was generally good model‐data agreement in mean large‐scale spatial patterns, but with substantial spread across the model ensemble and observational products. The global‐integrated, model ensemble‐mean export production, taken as the sinking POC flux at 100 m (6.08 ± 1.17 Pg C yr−1), and export ratio defined as sinking flux divided by net primary production (0.154 ± 0.026) both fell at the lower end of observational estimates. Comparison with observational constraints also suggested that the model ensemble may have underestimated regional biological CO2drawdown and air‐sea CO2flux in high productivity regions. Reasonable model‐data agreement was found for global‐integrated, ensemble‐mean sinking POC flux into the deep ocean at 1,000 m (0.65 ± 0.24 Pg C yr−1) and the transfer efficiency defined as flux at 1,000 m divided by flux at 100 m (0.122 ± 0.041), with both variables exhibiting considerable regional variability. The RECCAP2 analysis presents standard ocean biological carbon pump metrics for assessing biogeochemical model skill, metrics that are crucial for further modeling efforts to resolve remaining uncertainties involving system‐level interactions between ocean physics and biogeochemistry.

     
    more » « less
  4. Abstract

    Among marine organisms, gelatinous zooplankton (GZ; cnidarians, ctenophores, and pelagic tunicates) are unique in their energetic efficiency, as the gelatinous body plan allows them to process and assimilate high proportions of oceanic carbon. Upon death, their body shape facilitates rapid sinking through the water column, resulting in carcass depositions on the seafloor (“jelly‐falls”). GZ are thought to be important components of the biological pump, but their overall contribution to global carbon fluxes remains unknown. Using a data‐driven, three‐dimensional, carbon cycle model resolved to a 1° global grid, with a Monte Carlo uncertainty analysis, we estimate that GZ consumed 7.9–13 Pg C y−1in phytoplankton and zooplankton, resulting in a net production of 3.9–5.8 Pg C y−1in the upper ocean (top 200 m), with the largest fluxes from pelagic tunicates. Non‐predation mortality (carcasses) comprised 25% of GZ production, and combined with the much greater fecal matter flux, total GZ particulate organic carbon (POC) export at 100 m was 1.6–5.2 Pg C y−1, equivalent to 32–40% of the global POC export. The fast sinking GZ export resulted in a high transfer efficiency (Teff) of 38–62% to 1,000 m and 25–40% to the seafloor. Finally, jelly‐falls at depths >50 m are likely unaccounted for in current POC flux estimates and could increase benthic POC flux by 8–35%. The significant magnitude of and distinct sinking properties of GZ fluxes support a critical yet underrecognized role of GZ carcasses and fecal matter to the biological pump and air‐sea carbon balance.

     
    more » « less
  5. Abstract

    A considerable amount of particulate carbon produced by oceanic photosynthesis is exported to the deep-sea by the “gravitational pump” (~6.8 to 7.7 Pg C/year), sequestering it from the atmosphere for centuries. How particulate organic carbon (POC) is transformed during export to the deep sea however is not well understood. Here, we report that dominant suspended prokaryotes also found in sinking particles serve as informative tracers of particle export processes. In a three-year time series from oceanographic campaigns in the Pacific Ocean, upper water column relative abundances of suspended prokaryotes entrained in sinking particles decreased exponentially from depths of 75 to 250 m, conforming to known depth-attenuation patterns of carbon, energy, and mass fluxes in the epipelagic zone. Below ~250 m however, the relative abundance of suspended prokaryotes entrained in sinking particles increased with depth. These results indicate that microbial entrainment, colonization, and sinking particle formation are elevated at mesopelagic and bathypelagic depths. Comparison of suspended and sinking particle-associated microbes provides information about the depth-variability of POC export and biotic processes, that is not evident from biogeochemical data alone.

     
    more » « less