Abstract Background Substance use disorders (SUDs) represent major public health concerns and are linked to enhanced risk of legal consequences. Unresolved legal issues may prevent individuals with SUD from completing treatment. Interventions aimed at improving SUD treatment outcomes are limited. Filling that gap, this randomized controlled trial (RCT) tests the ability of a technology-assisted intervention to increase SUD treatment completion rates and improve post-treatment health, economic, justice-system, and housing outcomes. Methods A randomized controlled trial with a two-year administrative follow-up period will be conducted. Eight hundred Medicaid eligible and uninsured adults receiving SUD treatment will be recruited at community-based non-profit health care clinics in Southeast, Michigan, USA. Using an algorithm embedded in a community-based case management system, we randomly assign all eligible adults to one of two groups. The treatment/intervention group will receive hands-on assistance with a technology aimed at resolving unaddressed legal issues and the control group receives no treatment. Upon enrollment into the intervention, both treatment ( n = 400) and control groups ( n = 400) retain traditional options to resolve unaddressed legal issues, such as hiring an attorney, but only the treatment group is targeted the technology and offered personalized assistance in navigating the online legal platform. To develop baseline and historical contexts for participants, we collect life course history reports from all participants and intend to link those in each group to administrative data sources. In addition to the randomized controlled trial (RCT), we used an exploratory sequential mixed methods and participatory-based design to develop, test, and administer our life course history instruments to all participants. The primary objective is to test whether targeting no-cost online legal resources to those experiencing SUD improves their long-term recovery and decreases negative health, economic, justice-system, and housing outcomes. Discussion Findings from this RCT will improve our understanding of the acute socio-legal needs faced by those experiencing SUD and provide recommendations to help target resources toward the areas that best support long-term recovery. The public health impact includes making publicly available a deidentified, longitudinal dataset of uninsured and Medicaid eligible clients in treatment for SUD. Data include an overrepresentation of understudied groups including African American and American Indian Alaska Native persons documented to experience heightened risk for SUD-related premature mortality and justice-system involvement. Within these data, several intended outcome measures can inform the health policy landscape: (1) health, including substance use, disability, mental health diagnosis, and mortality; (2) financial health, including employment, earnings, public assistance receipt, and financial obligations to the state; (3) justice-system involvement, including civil and criminal legal system encounters; (4) housing, including homelessness, household composition, and homeownership. Trial registration Retrospectively registered # NCT05665179 on December 27, 2022.
more »
« less
Identifying Biomarkers for Accurate Detection of Stress
Substance use disorder (SUD) is a dangerous epidemic that develops out of recurrent use of alcohol and/or drugs and has the capability to severely damage one’s brain and behaviour. Stress is an established risk factor in SUD’s development of addiction and in reinstating drug seeking. Despite this expanding epidemic and the potential for its grave consequences, there are limited options available for management and treatment, as well as pharmacotherapies and psychosocial treatments. To this end, there is a need for new and improved devices dedicated to the detection, management, and treatment of SUD. In this paper, the negative effects of SUD-related stress were discussed, and based on that, a few significant biomarkers were selected from a set of eight features collected by a chest-worn device, RespiBAN Professional, on fifteen individuals. We used three machine learning classifiers on these optimal biomarkers to detect stress. Based on the accuracies, the best biomarkers to detect stress and those considered as features for classification were determined to be electrodermal activity (EDA), body temperature, and a chest-worn accelerometer. Additionally, the differences between mental stress and physical stress, as well as different administrations of meditation during the study, were identified and analysed. Challenges, implications, and applications were also discussed. In the near future, we aim to replicate the proposed methods in individuals with SUD.
more »
« less
- Award ID(s):
- 2042203
- PAR ID:
- 10406404
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 22
- Issue:
- 22
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 8703
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Stress increases the risk of several mental and physical health problems like anxiety, hypertension, and cardiovascular diseases. Better guidance and interventions towards mitigating the impact of stress can be provided if stress can be monitored continuously. The recent proliferation of wearable devices and their capability in measuring several physiological signals related to stress have created the opportunity to measure stress continuously in the wild. Wearable devices used to measure physiological signals are mostly placed on the wrist and the chest. Though currently chest sensors, with/without wrist sensors, provide better results in detecting stress than using wrist sensors only, chest devices are not as convenient and prevalent as wrist devices, particularly in the free-living context. In this paper, we present a solution to detect stress using wrist sensors that emulate the gold standard chest sensors. Data from wrist sensors are translated into the data from chest sensors, and the translated data is used for stress detection without requiring the users to wear any device on the chest. We evaluated our solution using a public dataset, and results show that our solution detects stress with accuracy comparable to the gold standard chest devices which are impractical for daily usemore » « less
-
A Mavragani (Ed.)BackgroundPosttraumatic stress disorder (PTSD) is a serious public health concern. However, individuals with PTSD often do not have access to adequate treatment. A conversational agent (CA) can help to bridge the treatment gap by providing interactive and timely interventions at scale. Toward this goal, we have developed PTSDialogue—a CA to support the self-management of individuals living with PTSD. PTSDialogue is designed to be highly interactive (eg, brief questions, ability to specify preferences, and quick turn-taking) and supports social presence to promote user engagement and sustain adherence. It includes a range of support features, including psychoeducation, assessment tools, and several symptom management tools. ObjectiveThis paper focuses on the preliminary evaluation of PTSDialogue from clinical experts. Given that PTSDialogue focuses on a vulnerable population, it is critical to establish its usability and acceptance with clinical experts before deployment. Expert feedback is also important to ensure user safety and effective risk management in CAs aiming to support individuals living with PTSD. MethodsWe conducted remote, one-on-one, semistructured interviews with clinical experts (N=10) to gather insight into the use of CAs. All participants have completed their doctoral degrees and have prior experience in PTSD care. The web-based PTSDialogue prototype was then shared with the participant so that they could interact with different functionalities and features. We encouraged them to “think aloud” as they interacted with the prototype. Participants also shared their screens throughout the interaction session. A semistructured interview script was also used to gather insights and feedback from the participants. The sample size is consistent with that of prior works. We analyzed interview data using a qualitative interpretivist approach resulting in a bottom-up thematic analysis. ResultsOur data establish the feasibility and acceptance of PTSDialogue, a supportive tool for individuals with PTSD. Most participants agreed that PTSDialogue could be useful for supporting self-management of individuals with PTSD. We have also assessed how features, functionalities, and interactions in PTSDialogue can support different self-management needs and strategies for this population. These data were then used to identify design requirements and guidelines for a CA aiming to support individuals with PTSD. Experts specifically noted the importance of empathetic and tailored CA interactions for effective PTSD self-management. They also suggested steps to ensure safe and engaging interactions with PTSDialogue. ConclusionsBased on interviews with experts, we have provided design recommendations for future CAs aiming to support vulnerable populations. The study suggests that well-designed CAs have the potential to reshape effective intervention delivery and help address the treatment gap in mental health.more » « less
-
Alfonso, Valencia (Ed.)Abstract Motivation There is growing interest in the biomedical research community to incorporate retrospective data, available in healthcare systems, to shed light on associations between different biomarkers. Understanding the association between various types of biomedical data, such as genetic, blood biomarkers, imaging, etc. can provide a holistic understanding of human diseases. To formally test a hypothesized association between two types of data in Electronic Health Records (EHRs), one requires a substantial sample size with both data modalities to achieve a reasonable power. Current association test methods only allow using data from individuals who have both data modalities. Hence, researchers cannot take advantage of much larger EHR samples that includes individuals with at least one of the data types, which limits the power of the association test. Results We present a new method called the Semi-paired Association Test (SAT) that makes use of both paired and unpaired data. In contrast to classical approaches, incorporating unpaired data allows SAT to produce better control of false discovery and to improve the power of the association test. We study the properties of the new test theoretically and empirically, through a series of simulations and by applying our method on real studies in the context of Chronic Obstructive Pulmonary Disease. We are able to identify an association between the high-dimensional characterization of Computed Tomography chest images and several blood biomarkers as well as the expression of dozens of genes involved in the immune system. Availability and implementation Code is available on https://github.com/batmanlab/Semi-paired-Association-Test. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
Abstract Background and Objectives Substance use disorders (SUDs) are chronic relapsing diseases characterized by significant morbidity and mortality. Phenomenologically, patients with SUDs present with a repeating cycle of intoxication, withdrawal, and craving, significantly impacting their diagnosis and treatment. There is a need for better identification and monitoring of these disease states. Remote monitoring chronic illness with wearable devices offers a passive, unobtrusive, constant physiological data assessment. We evaluate the current evidence base for remote monitoring of nonalcohol, nonnicotine SUDs. Methods We performed a systematic, comprehensive literature review and screened 1942 papers. Results We found 15 studies that focused mainly on the intoxication stage of SUD. These studies used wearable sensors measuring several physiological parameters (ECG, HR, O 2 , Accelerometer, EDA, temperature) and implemented study‐specific algorithms to evaluate the data. Discussion and Conclusions Studies were extracted, organized, and analyzed based on the three SUD disease states. The sample sizes were relatively small, focused primarily on the intoxication stage, had low monitoring compliance, and required significant computational power preventing “real‐time” results. Cardiovascular data was the most consistently valuable data in the predictive algorithms. This review demonstrates that there is currently insufficient evidence to support remote monitoring of SUDs through wearable devices. Scientific Significance This is the first systematic review to show the available data on wearable remote monitoring of SUD symptoms in each stage of the disease cycle. This clinically relevant approach demonstrates what we know and do not know about the remote monitoring of SUDs within disease states.more » « less
An official website of the United States government

