skip to main content


Title: Stress Detection via Sensor Translation
Stress increases the risk of several mental and physical health problems like anxiety, hypertension, and cardiovascular diseases. Better guidance and interventions towards mitigating the impact of stress can be provided if stress can be monitored continuously. The recent proliferation of wearable devices and their capability in measuring several physiological signals related to stress have created the opportunity to measure stress continuously in the wild. Wearable devices used to measure physiological signals are mostly placed on the wrist and the chest. Though currently chest sensors, with/without wrist sensors, provide better results in detecting stress than using wrist sensors only, chest devices are not as convenient and prevalent as wrist devices, particularly in the free-living context. In this paper, we present a solution to detect stress using wrist sensors that emulate the gold standard chest sensors. Data from wrist sensors are translated into the data from chest sensors, and the translated data is used for stress detection without requiring the users to wear any device on the chest. We evaluated our solution using a public dataset, and results show that our solution detects stress with accuracy comparable to the gold standard chest devices which are impractical for daily use  more » « less
Award ID(s):
1646470
NSF-PAR ID:
10190247
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Distributed Computing in Sensor Systems and workshops
ISSN:
2325-2944
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Mental health disorders are a leading cause of medical disabilities across an individual’s lifespan. This burden is particularly substantial in children and adolescents because of challenges in diagnosis and the lack of precision medicine approaches. However, the widespread adoption of wearable devices (eg, smart watches) that are conducive for artificial intelligence applications to remotely diagnose and manage psychiatric disorders in children and adolescents is promising. Objective This study aims to conduct a scoping review to study, characterize, and identify areas of innovations with wearable devices that can augment current in-person physician assessments to individualize diagnosis and management of psychiatric disorders in child and adolescent psychiatry. Methods This scoping review used information from the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A comprehensive search of several databases from 2011 to June 25, 2021, limited to the English language and excluding animal studies, was conducted. The databases included Ovid MEDLINE and Epub ahead of print, in-process and other nonindexed citations, and daily; Ovid Embase; Ovid Cochrane Central Register of Controlled Trials; Ovid Cochrane Database of Systematic Reviews; Web of Science; and Scopus. Results The initial search yielded 344 articles, from which 19 (5.5%) articles were left on the final source list for this scoping review. Articles were divided into three main groups as follows: studies with the main focus on autism spectrum disorder, attention-deficit/hyperactivity disorder, and internalizing disorders such as anxiety disorders. Most of the studies used either cardio-fitness chest straps with electrocardiogram sensors or wrist-worn biosensors, such as watches by Fitbit. Both allowed passive data collection of the physiological signals. Conclusions Our scoping review found a large heterogeneity of methods and findings in artificial intelligence studies in child psychiatry. Overall, the largest gap identified in this scoping review is the lack of randomized controlled trials, as most studies available were pilot studies and feasibility trials. 
    more » « less
  2. Physiological and behavioral data collected from wearable or mobile sensors have been used to estimate self-reported stress levels. Since stress annotation usually relies on self-reports during the study, a limited amount of labeled data can be an obstacle to developing accurate and generalized stress-predicting models. On the other hand, the sensors can continuously capture signals without annotations. This work investigates leveraging unlabeled wearable sensor data for stress detection in the wild. We propose a two-stage semi-supervised learning framework that leverages wearable sensor data to help with stress detection. The proposed structure consists of an auto-encoder pre-training method for learning information from unlabeled data and the consistency regularization approach to enhance the robustness of the model. Besides, we propose a novel active sampling method for selecting unlabeled samples to avoid introducing redundant information to the model. We validate these methods using two datasets with physiological signals and stress labels collected in the wild, as well as four human activity recognition (HAR) datasets to evaluate the generality of the proposed method. Our approach demonstrated competitive results for stress detection, improving stress classification performance by approximately 7% to 10% on the stress detection datasets compared to the baseline supervised learning models. Furthermore, the ablation study we conducted for the HAR tasks supported the effectiveness of our methods. Our approach showed comparable performance to state-of-the-art semi-supervised learning methods for both stress detection and HAR tasks. 
    more » « less
  3. Chronic stress has been associated with a variety of pathophysiological risks including developing mental illness. Conversely, appropriate stress management, can be used to foster mental wellness proactively. Yet, there is no existing method that accurately and objectively monitors stress. With recent advances in electronic-skin (e-skin) and wearable technologies, it is possible to design devices that continuously measure physiological parameters linked to chronic stress and other mental health and wellness conditions. However, the design approach should be different from conventional wearables due to considerations like signal-to-noise ratio and the risk of stigmatization. Here, we present a multi-part study that combines user-centered design with engineering-centered data collection to inform future design efforts. To assess human factors, we conducted an n=24 participant design probe study that examined perceptions of an e-skin for mental health and wellness as well as preferred wear locations. We complement this with an n=10 and n=16 participant data collection study to measure physiological signals at several potential wear locations. By balancing human factors and biosignals, we conclude that the upper arm and forearm are optimal wear locations. 
    more » « less
  4. null (Ed.)
    Abstract Background Unified Parkinson Disease Rating Scale-part III (UPDRS III) is part of the standard clinical examination performed to track the severity of Parkinson’s disease (PD) motor complications. Wearable technologies could be used to reduce the need for on-site clinical examinations of people with Parkinson’s disease (PwP) and provide a reliable and continuous estimation of the severity of PD at home. The reported estimation can be used to successfully adjust the dose and interval of PD medications. Methods We developed a novel algorithm for unobtrusive and continuous UPDRS-III estimation at home using two wearable inertial sensors mounted on the wrist and ankle. We used the ensemble of three deep-learning models to detect UPDRS-III-related patterns from a combination of hand-crafted features, raw temporal signals, and their time–frequency representation. Specifically, we used a dual-channel, Long Short-Term Memory (LSTM) for hand-crafted features, 1D Convolutional Neural Network (CNN)-LSTM for raw signals, and 2D CNN-LSTM for time–frequency data. We utilized transfer learning from activity recognition data and proposed a two-stage training for the CNN-LSTM networks to cope with the limited amount of data. Results The algorithm was evaluated on gyroscope data from 24 PwP as they performed different daily living activities. The estimated UPDRS-III scores had a correlation of $$0.79\, (\textit{p}<0.0001)$$ 0.79 ( p < 0.0001 ) and a mean absolute error of 5.95 with the clinical examination scores without requiring the patients to perform any specific tasks. Conclusion Our analysis demonstrates the potential of our algorithm for estimating PD severity scores unobtrusively at home. Such an algorithm could provide the required motor-complication measurements without unnecessary clinical visits and help the treating physician provide effective management of the disease. 
    more » « less
  5. Several unobtrusive sensors have been tested in studies to capture physiological reactions to stress in workplace settings. Lab studies tend to focus on assessing sensors during a specific computer task, while in situ studies tend to offer a generalized view of sensors’ efficacy for workplace stress monitoring, without discriminating different tasks. Given the variation in workplace computer activities, this study investigates the efficacy of unobtrusive sensors for stress measurement across a variety of tasks. We present a comparison of five physiological measurements obtained in a lab experiment, where participants completed six different computer tasks, while we measured their stress levels using a chest-band (ECG, respiration), a wristband (PPG and EDA), and an emerging thermal imaging method (perinasal perspiration). We found that thermal imaging can detect increased stress for most participants across all tasks, while wrist and chest sensors were less generalizable across tasks and participants. We summarize the costs and benefits of each sensor stream, and show how some computer use scenarios present usability and reliability challenges for stress monitoring with certain physiological sensors. We provide recommendations for researchers and system builders for measuring stress with physiological sensors during workplace computer use. 
    more » « less