The bodies of most swimming fishes are very flexible and deform due to both external fluid dynamic forces and internal musculoskeletal forces. If fluid forces change, the body motion will also change unless the fish senses the change and alters its muscle activity to compensate. Lampreys and other fishes have mechanosensory cells in their spinal cords that allow them to sense how their body is bending. We hypothesized that lampreys (Petromyzon marinus) actively regulate body curvature to maintaina fairly constant swimming waveform even as swimming speed and fluid dynamic forces change. To test this hypothesis, we measured the steady swimming kinematics of lampreys swimming in normal water, and water in which the viscosity was increased by 10 or 20 times by adding methylcellulose. Increasing the viscosity over this range increases the drag coefficient, potentially increasing fluid forces up to 40%. Previous computational results suggested that if lampreys did not compensate for these forces, the swimming speed would drop by about 52%, the amplitude would drop by 39%, and posterior body curvature would increase by about 31% , while tail beat frequency would remain the same. Five juvenile sea lampreys were filmed swimming through still water, and midlines were digitized using standard techniques. Although swimming speed dropped by 44% from 1× to 10× viscosity, amplitude only decreased by 4% , and curvature increased by 7%, a much smaller change than the amount we estimated if there was no compensation. To examine the waveform overall, we performed a complex orthogonal decomposition and found that the first mode of the swimming waveform (the primary swimming pattern) did not change substantially, even at 20× viscosity. Thus, it appears that lampreys are compensating, at least partially, for the changes in viscosity, which in turn suggests that sensory feedback is involved in regulating the body waveform.
more » « less- Award ID(s):
- 1652582
- NSF-PAR ID:
- 10406509
- Publisher / Repository:
- The Company of Biologists
- Date Published:
- Journal Name:
- Journal of Experimental Biology
- ISSN:
- 0022-0949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT Whereas many fishes swim steadily, zebrafish regularly exhibit unsteady burst-and-coast swimming, which is characterized by repeated sequences of turns followed by gliding periods. Such a behavior offers the opportunity to investigate the hypothesis that negative mechanical work occurs in posterior regions of the body during early phases of the turn near the time of maximal body curvature. Here, we used a modified particle image velocimetry (PIV) technique to obtain high-resolution flow fields around the zebrafish body during turns. Using detailed swimming kinematics coupled with body surface pressure computations, we estimated fluid–structure interaction forces and the pattern of forces and torques along the body during turning. We then calculated the mechanical work done by each body segment. We used estimated patterns of positive and negative work along the body to evaluate the hypothesis (based on fish midline kinematics) that the posterior body region would experience predominantly negative work. Between 10% and 20% of the total mechanical work was done by the fluid on the body (negative work), and negative work was concentrated in the anterior and middle areas of the body, not along the caudal region. Energetic costs of turning were calculated by considering the sum of positive and negative work and were compared with previous metabolic estimates of turning energetics in fishes. The analytical workflow presented here provides a rigorous way to quantify hydrodynamic mechanisms of fish locomotion and facilitates the understanding of how body kinematics generate locomotor forces in freely swimming fishes.more » « less
-
Abstract Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body’s kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance.
-
null (Ed.)Recent work showed that two species of hammerhead sharks operated as a double oscillating system, where frequency and amplitude differed in the anterior and posterior parts of the body. We hypothesized that a double oscillating system would be present in a large, volitionally swimming, conventionally shaped carcharhinid shark. Swimming kinematics analyses provide quantification to mechanistically examine swimming within and among species. Here, we quantify blacktip shark (Carcharhinus limbatus) volitional swimming kinematics under natural conditions to assess variation between anterior and posterior body regions and demonstrate the presence of a double oscillating system. We captured footage of 80 individual blacktips swimming in the wild using a DJI Phantom 4 Pro aerial drone. The widespread accessibility of aerial drone technology has allowed for greater observation of wild marine megafauna. We used Loggerpro motion tracking software to track five anatomical landmarks frame by frame to calculate tailbeat frequency, tailbeat amplitude, speed, and anterior/posterior variables: amplitude and frequency of the head and tail, and the body curvature measured as anterior and posterior flexion. We found significant increases in tailbeat frequency and amplitude with increasing swimming speed. Tailbeat frequency decreased and tailbeat amplitude increased as posterior flexion amplitude increased. We found significant differences between anterior and posterior amplitudes and frequencies, suggesting a double oscillating modality of wave propagation. These data support previous work that hypothesized the importance of a double oscillating system for increased sensory perception. These methods demonstrate the utility of quantifying swimming kinematics of wild animals through direct observation, with the potential to apply a biomechanical perspective to movement ecology paradigms.more » « less
-
Abstract Fishes generate force to swim by activating muscles on either side of their flexible bodies. To accelerate, they must produce higher muscle forces, which leads to higher reaction forces back on their bodies from the environment. If their bodies are too flexible, the forces during acceleration could not be transmitted effectively to the environment, but fish can potentially use their muscles to increase the effective stiffness of their body. Here, we quantified red muscle activity during acceleration and steady swimming, looking for patterns that would be consistent with the hypothesis of body stiffening. We used high-speed video, electromyographic recordings, and a new digital inertial measurement unit to quantify body kinematics, red muscle activity, and 3D orientation and centre of mass acceleration during forward accelerations and steady swimming over several speeds. During acceleration, fish co-activated anterior muscle on the left and right side, and activated all muscle sooner and kept it active for a larger fraction of the tail beat cycle. These activity patterns are both known to increase effective stiffness for muscle tissue
in vitro , which is consistent with our hypothesis that fish use their red muscle to stiffen their bodies during acceleration. We suggest that during impulsive movements, flexible organisms like fishes can use their muscles not only to generate propulsive power but to tune the effective mechanical properties of their bodies, increasing performance during rapid movements and maintaining flexibility for slow, steady movements. -
ABSTRACT Nearly all fish have flexible bodies that bend as a result of internal muscular forces and external fluid forces that are dynamically coupled with the mechanical properties of the body. Swimming is therefore strongly influenced by the body's flexibility, yet we do not know how fish species vary in their flexibility and in their ability to modulate flexibility with muscle activity. A more fundamental problem is our lack of knowledge about how any of these differences in flexibility translate into swimming performance. Thus, flexibility represents a hidden axis of diversity among fishes that may have substantial impacts on swimming performance. Although engineers have made substantial progress in understanding these fluid–structure interactions using physical and computational models, the last biological review of these interactions and how they give rise to fish swimming was carried out more than 20 years ago. In this Review, we summarize work on passive and active body mechanics in fish, physical models of fish and bioinspired robots. We also revisit some of the first studies to explore flexural stiffness and discuss their relevance in the context of more recent work. Finally, we pose questions and suggest future directions that may help reveal important links between flexibility and swimming performance.more » « less