Abstract This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation‐based products. The mean sea‐air CO2flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1based on an ensemble of reconstructions of the history of sea surface pCO2(pCO2products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2‐driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate‐forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate‐driven variability exceeding the CO2‐forced variability by 2–3 times. These results suggest that anthropogenic CO2dominates the ocean CO2sink, while climate‐driven variability is potentially large but highly uncertain and not consistently captured across different methods.
more »
« less
Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction
Abstract China has increased its vegetation coverage and enhanced its terrestrial carbon sink through ecological restoration since the end of the 20th century. However, the temporal variation in vegetation carbon sequestration remains unclear, and the relative effects of climate change and ecological restoration efforts are under debate. By integrating remote sensing and machine learning with a modelling approach, we explored the biological and physical pathways by which both climate change and human activities (e.g., ecological restoration, cropland expansion, and urbanization) have altered Chinese terrestrial ecosystem structures and functions, including vegetation cover, surface heat fluxes, water flux, and vegetation carbon sequestration (defined by gross and net primary production, GPP and NPP). Our study indicated that during 2001–2018, GPP in China increased significantly at a rate of 49.1–53.1 TgC/yr2, and the climatic and anthropogenic contributions to GPP gains were comparable (48%–56% and 44%–52%, respectively). Spatially, afforestation was the dominant mechanism behind forest cover expansions in the farming‐pastoral ecotone in northern China, on the Loess Plateau and in the southwest karst region, whereas climate change promoted vegetation cover in most parts of southeastern China. At the same time, the increasing trend in NPP (22.4–24.9 TgC/yr2) during 2001–2018 was highly attributed to human activities (71%–81%), particularly in southern, eastern, and northeastern China. Both GPP and NPP showed accelerated increases after 2010 because the anthropogenic NPP gains during 2001–2010 were generally offset by the climate‐induced NPP losses in southern China. However, after 2010, the climatic influence reversed, thus highlighting the vegetation carbon sequestration that occurs with ecological restoration.
more »
« less
- Award ID(s):
- 1903722
- PAR ID:
- 10406564
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 27
- Issue:
- 22
- ISSN:
- 1354-1013
- Page Range / eLocation ID:
- p. 5848-5864
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The increase of tree canopy cover due to woody plant encroachment and tree plantations modifies both carbon and water dynamics. The tradeoffs between ecosystem net primary productivity (NPP) and water use with increasing tree cover in different climate conditions, particularly under future climate scenarios, are not well understood. Within the climate transition zone of the southern Great Plains, USA, we used the Soil and Water Assessment Tool+ (SWAT+) to investigate the combined impacts of increasing tree cover and climate change on carbon and water dynamics in three watersheds representing semiarid, subhumid, and humid climates. Model simulations incorporated two land use modifications (Baseline: existing tree cover; Forest +: increasing evergreen tree cover), in conjunction with two climate change projections (the RCP45 and the RCP85), spanning two time periods (historic: 1991-2020; future: 2070-2099). With climate change, the subhumid and humid watersheds exhibited a greater increase in evapotranspiration (ET) and a corresponding reduction in runoff compared to the semi-arid watershed, while the semi-arid and subhumid watersheds encountered pronounced losses in water availability for streams (>200 mm/year) due to increasing tree cover and climate change. With every 1 % increase in tree cover, both NPP and water use efficiency were projected to increase in all three watersheds under both climate change scenarios, with the subhumid watershed demonstrating the largest increases (>0.16 Mg/ha/year and 170 %, respectively). Increasing tree cover within grasslands, either through woody plant expansion or afforestation, boosts ecosystem NPP, particularly in subhumid regions. Nevertheless, this comes with a notable decrease in water resources, a concern made worse by future climate change. While afforestation offers the potential for greater NPP, it also brings heightened water scarcity concerns, highlighting the importance of tailoring carbon sequestration strategies within specific regions to mitigate unintended repercussions on water availability.more » « less
-
Abstract Mangroves are the most blue-carbon rich coastal wetlands contributing to the reduction of atmospheric CO2through photosynthesis (sequestration) and high soil organic carbon (C) storage. Globally, mangroves are increasingly impacted by human and natural disturbances under climate warming, including pervasive pulsing tropical cyclones. However, there is limited information assessing cyclone’s functional role in regulating wetlands carbon cycling from annual to decadal scales. Here we show how cyclones with a wide range of integrated kinetic energy (IKE) impact C fluxes in the Everglades, a neotropical region with high cyclone landing frequency. Using long-term mangrove Net Primary Productivity (Litterfall, NPPL) data (2001–2018), we estimated cyclone-induced litterfall particulate organic C (litter-POC) export from mangroves to estuarine waters. Our analysis revealed that this lateral litter-POC flux (71–205 g C m−2 year−1)—currently unaccounted in global C budgets—is similar to C burial rates (69–157 g C m−2 year−1) and dissolved inorganic carbon (DIC, 61–229 g C m−2 year−1) export. We proposed a statistical model (PULITER) between IKE-based pulse index and NPPLto determine cyclone’s impact on mangrove role as C sink or source. Including the cyclone’s functional role in regulating mangrove C fluxes is critical to developing local and regional climate change mitigation plans.more » « less
-
Abstract Extreme climate events are becoming more frequent, with poorly understood implications for carbon sequestration by terrestrial ecosystems. A better understanding will critically depend on accurate and precise quantification of ecosystems responses to these events. Taking the 2019 US Midwest floods as a case study, we investigate current capabilities for tracking regional flux anomalies with “top‐down” inversion analyses that assimilate atmospheric CO2observations. For this analysis, we develop a regionally nested version of the NASA Carbon Monitoring System‐Flux system for North America (CMS‐Flux‐NA) that allows high resolution atmospheric transport (0.5° × 0.625°). Relative to a 2018 baseline, we find the 2019 US Midwest growing season net carbon uptake is reduced by 11–57 TgC (3%–16%, range across assimilated CO2data sets). These estimates are found to be consistent with independent “bottom‐up” estimates of carbon uptake based on vegetation remote sensing (15–78 TgC). We then investigate current limitations in tracking regional carbon budgets using “top‐down” methods. In a set of observing system simulation experiments, we show that the ability of atmospheric CO2inversions to capture regional carbon flux anomalies is still limited by observational coverage gaps for both in situ and satellite observations. Future space‐based missions that allow for daily observational coverage across North America would largely mitigate these observational gaps, allowing for improved top‐down estimates of ecosystem responses to extreme climate events.more » « less
-
Abstract Carbon fluxes at the land‐atmosphere interface are strongly influenced by weather and climate conditions. Yet what is usually known as “climate extremes” does not always translate into very high or low carbon fluxes or so‐called “carbon extremes.” To reveal the patterns of how climate extremes influence terrestrial carbon fluxes, we analyzed the interannual variations in ecosystem carbon fluxes simulated by the Terrestrial Biosphere Models (TBMs) in the Inter‐Sectoral Impact Model Intercomparison Project. At the global level, TBMs simulated reduced ecosystem net primary productivity (NPP; 18.5 ± 9.3 g C m−2 yr−1), but enhanced heterotrophic respiration (Rh; 7 ± 4.6 g C m−2 yr−1) during extremely hot events. TBMs also simulated reduced NPP (60.9 ± 24.4 g C m−2 yr−1) and reduced Rh (16.5 ± 11.4 g C m−2 yr−1) during extreme dry events. Influences of precipitation extremes on terrestrial carbon uptake were larger in the arid/semiarid zones than other regions. During hot extremes, ecosystems in the low latitudes experienced a larger reduction in carbon uptake. However, a large fraction of carbon extremes did not occur in concert with either temperature or precipitation extremes. Rather these carbon extremes are likely to be caused by the interactive effects of the concurrent temperature and precipitation anomalies. The interactive effects showed considerable spatial variations with the largest effects on NPP in South America and Africa. Additionally, TBMs simulated a stronger sensitivity of ecosystem productivity to precipitation than satellite estimates. This study provides new insights into the complex ecosystem responses to climate extremes, especially the emergent properties of carbon dynamics resulting from compound climate extremes.more » « less
An official website of the United States government
